Afficher la notice abrégée

hal.structure.identifierAdvanced 3D Numerical Modeling in Geophysics [Magique 3D]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorDURUFLÉ, Marc
hal.structure.identifierAdvanced 3D Numerical Modeling in Geophysics [Magique 3D]
hal.structure.identifierLaboratoire de Mathématiques et de leurs Applications [Pau] [LMAP]
dc.contributor.authorPÉRON, Victor
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierModélisation, contrôle et calcul [MC2]
dc.contributor.authorPOIGNARD, Clair
dc.date.created2013
dc.date.issued2014
dc.identifier.issn1815-2406
dc.description.abstractEnWe present a review on the accuracy of asymptotic models for the scattering problem of electromagnetic waves in domains with thin layer. These models appear as first order approximations of the electromagnetic field. They are obtained thanks to a multiscale expansion of the exact solution with respect to the thickness of the thin layer, that makes possible to replace the thin layer by approximate conditions. We present the advantages and the drawbacks of several approximations together with numerical validations and simulations. The main motivation of this work concerns the computation of electromagnetic field in biological cells. The main difficulty to compute the local electric field lies in the thinness of the membrane and in the high contrast between the electrical conductivities of the cytoplasm and of the membrane, which provides a specific behavior of the electromagnetic field at low frequencies.
dc.description.sponsorshipModélisation multi-échelle de l'électroporation validée par les expériences - ANR-11-BS01-0006
dc.language.isoen
dc.publisherGlobal Science Press
dc.subject.enasymptotics
dc.subject.entime-harmonic Maxwell's equations
dc.subject.enFinite Element Method
dc.subject.enEdge Elements
dc.title.enThin Layer Models For Electromagnetism
dc.typeArticle de revue
dc.identifier.doi10.4208/cicp.120813.100114a
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalCommunications in Computational Physics
bordeaux.page213-238
bordeaux.volume16
bordeaux.peerReviewedoui
hal.identifierhal-00918634
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00918634v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Communications%20in%20Computational%20Physics&rft.date=2014&rft.volume=16&rft.spage=213-238&rft.epage=213-238&rft.eissn=1815-2406&rft.issn=1815-2406&rft.au=DURUFL%C3%89,%20Marc&P%C3%89RON,%20Victor&POIGNARD,%20Clair&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée