Afficher la notice abrégée

dc.contributor.authorBILU, Yuri
hal.structure.identifierPolynomials, Combinatorics, Arithmetic [POLKA]
dc.contributor.authorHANROT, Guillaume
dc.date.issued1998
dc.identifier.issn0010-437X
dc.description.abstractEnWe describe a method for complete solution of the superelliptic Diophantine equation ay^p=f(x). The method is based on Baker's theory of linear forms in the logarithms. The characteristic feature of our approach (as compared with the classical method is that we reduce the equation directly to the linear forms in logarithms, without intermediate use of Thue and linear unit equations. We show that the reduction method of Baker and Davenport is applicable for superelliptic equations, and develop a very efficient method for enumerating the solutions below the reduced bound. The method requires computing the algebraic data in number fields of degree pn(n-1)/2 at most; in many cases this number can be reduced. Two examples with p=3 and n=4 are given.
dc.language.isoen
dc.publisherFoundation Compositio Mathematica
dc.subjectsoution of diophantine equations
dc.subjectméthode de Baker
dc.subjectBaker's method
dc.subjectrésolution d'équations diophantiennes
dc.title.enSolving superelliptic diophantine equations by Baker's method
dc.typeArticle de revue
dc.identifier.doi10.1023/A:1000305028888
dc.subject.halInformatique [cs]/Autre [cs.OH]
bordeaux.journalCompositio Mathematica
bordeaux.page273--312
bordeaux.volume112
bordeaux.issue3
bordeaux.peerReviewedoui
hal.identifierinria-00098523
hal.version1
hal.popularnon
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//inria-00098523v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Compositio%20Mathematica&rft.date=1998&rft.volume=112&rft.issue=3&rft.spage=273--312&rft.epage=273--312&rft.eissn=0010-437X&rft.issn=0010-437X&rft.au=BILU,%20Yuri&HANROT,%20Guillaume&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée