Afficher la notice abrégée

hal.structure.identifierLaboratoire d'hydrodynamique [LadHyX]
dc.contributor.authorHOGAN, Brenna
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorSHEN, Zaiyi
hal.structure.identifierLaboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] [LIPhy]
dc.contributor.authorZHANG, Hengdi
hal.structure.identifierLaboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] [LIPhy]
dc.contributor.authorMISBAH, Chaouqi
hal.structure.identifierLaboratoire d'hydrodynamique [LadHyX]
dc.contributor.authorBARAKAT, Abdul
dc.date.issued2019-08
dc.identifier.issn1617-7959
dc.description.abstractEnThe effect of red blood cells and the undulation of the endothelium on the shear stress in the microvasculature is studied numerically using the lattice Boltzmann-immersed boundary method (LB-IBM). The results demonstrate a significant effect of both the undulation of the endothelium and red blood cells on wall shear stress. Our results also reveal that morphological alterations of red blood cells, as occur in certain pathologies, can significantly affect the values of wall shear stress. The resulting fluctuations in wall shear stress greatly exceed the nominal values, emphasizing the importance of the particulate nature of blood as well as a more realistic description of vessel wall geometry in the study of hemodynamic forces. We find that within the channel widths investigated, which correspond to those found in the microvasculature, the inverse minimum distance normalized to the channel width between the red blood cell and the wall is predictive of the maximum wall shear stress observed in straight channels with a flowing red blood cell. We find that the maximum wall shear stress varies several factors more over a range of capillary numbers (dimen
dc.language.isoen
dc.publisherSpringer Verlag
dc.subject.enHemodynamic Forces
dc.subject.enShear Stress
dc.subject.enEndothelium
dc.subject.enRed Blood Cells
dc.title.enShear stress in the microvasculature: influence of red blood cell morphology and endothelial wall undulation
dc.typeArticle de revue
dc.identifier.doi10.1007/s10237-019-01130-8
dc.subject.halSciences de l'ingénieur [physics]
bordeaux.journalBiomechanics and Modeling in Mechanobiology
bordeaux.page1095-1109
bordeaux.volume18
bordeaux.issue4
bordeaux.peerReviewedoui
hal.identifierhal-03101140
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03101140v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Biomechanics%20and%20Modeling%20in%20Mechanobiology&rft.date=2019-08&rft.volume=18&rft.issue=4&rft.spage=1095-1109&rft.epage=1095-1109&rft.eissn=1617-7959&rft.issn=1617-7959&rft.au=HOGAN,%20Brenna&SHEN,%20Zaiyi&ZHANG,%20Hengdi&MISBAH,%20Chaouqi&BARAKAT,%20Abdul&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée