Stokes Equation in a Semi-Infinite Region: Generalization of the Lamb Solution and Applications to Marangoni Flows
dc.contributor.author | KOLESKI, Goce | |
hal.structure.identifier | Laboratoire Ondes et Matière d'Aquitaine [LOMA] | |
dc.contributor.author | BICKEL, Thomas | |
dc.date.issued | 2020-12 | |
dc.description.abstractEn | We consider the creeping flow of a Newtonian fluid in a hemispherical region. In a domain with spherical or nearly spherical geometry, the solution of the Stokes equation can be expressed as a series of spherical harmonics. However, the original Lamb solution is not complete when the flow is restricted to a semi-infinite space. The general solution in hemispherical geometry is then constructed explicitly. As an application, we discuss the solutions of Marangoni flows due to a local source at the liquid–air interface. | |
dc.language.iso | en | |
dc.publisher | MDPI | |
dc.title.en | Stokes Equation in a Semi-Infinite Region: Generalization of the Lamb Solution and Applications to Marangoni Flows | |
dc.type | Article de revue | |
dc.identifier.doi | 10.3390/fluids5040249 | |
dc.subject.hal | Physique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft] | |
dc.subject.hal | Physique [physics]/Physique [physics]/Dynamique des Fluides [physics.flu-dyn] | |
dc.identifier.arxiv | 2109.04773 | |
bordeaux.journal | Fluids | |
bordeaux.page | 249 | |
bordeaux.volume | 5 | |
bordeaux.issue | 4 | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03347000 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03347000v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Fluids&rft.date=2020-12&rft.volume=5&rft.issue=4&rft.spage=249&rft.epage=249&rft.au=KOLESKI,%20Goce&BICKEL,%20Thomas&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |