Afficher la notice abrégée

hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorPISTOLESI, F.
hal.structure.identifierUniversity of Chicago
dc.contributor.authorCLELAND, A. N.
hal.structure.identifierInstitut de Ciencies Fotoniques [Castelldefels] [ICFO]
dc.contributor.authorBACHTOLD, A.
dc.date.issued2021-08
dc.identifier.issn2160-3308
dc.description.abstractEnMechanical oscillators have been demonstrated with very high quality factors over a wide range of frequencies. These also couple to a wide variety of fields and forces, making them ideal as sensors. The realization of a mechanically-based quantum bit could therefore provide an important new platform for quantum computation and sensing. Here we show that by coupling one of the flexural modes of a suspended carbon nanotube to the charge states of a double quantum dot defined in the nanotube, it is possible to induce sufficient anharmonicity in the mechanical oscillator so that the coupled system can be used as a mechanical quantum bit. This can however only be achieved when the device enters the ultrastrong coupling regime. We discuss the conditions for the anharmonicity to appear, and we show that the Hamiltonian can be mapped onto an anharmonic oscillator, allowing us to work out the energy level structure and how decoherence from the quantum dot and the mechanical oscillator are inherited by the qubit. Remarkably, the dephasing due to the quantum dot is expected to be reduced by several orders of magnitude in the coupled system. We outline qubit control, readout protocols, the realization of a CNOT gate by coupling two qubits to microwave cavity, and finally how the qubit can be used as a static force quantum sensor.
dc.description.sponsorshipNano-optomécanique en cavité dans le régime de couplage ultrafort. - ANR-19-CE47-0012
dc.language.isoen
dc.publisherAmerican Physical Society
dc.title.enProposal for a Nanomechanical Qubit
dc.typeArticle de revue
dc.identifier.doi10.1103/PhysRevX.11.031027
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Systèmes mésoscopiques et effet Hall quantique [cond-mat.mes-hall]
dc.identifier.arxiv2008.10524
bordeaux.journalPhysical Review X
bordeaux.page031027
bordeaux.volume11
bordeaux.issue3
bordeaux.peerReviewedoui
hal.identifierhal-03323913
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03323913v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Physical%20Review%20X&rft.date=2021-08&rft.volume=11&rft.issue=3&rft.spage=031027&rft.epage=031027&rft.eissn=2160-3308&rft.issn=2160-3308&rft.au=PISTOLESI,%20F.&CLELAND,%20A.%20N.&BACHTOLD,%20A.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée