Mostrar el registro sencillo del ítem

dc.contributor.authorVERMA, Gopal
hal.structure.identifierUniversity of Liverpool
dc.contributor.authorYADAV, Gyanendra
dc.contributor.authorSARAJ, Chaudry
hal.structure.identifierUniversity of Illinois at Urbana-Champaign [Urbana] [UIUC]
dc.contributor.authorLI, Longnan
hal.structure.identifierKyushu University
hal.structure.identifierUniversity of Illinois at Urbana-Champaign [Urbana] [UIUC]
dc.contributor.authorMILJKOVIC, Nenad
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorDELVILLE, Jean-Pierre
dc.contributor.authorLI, Wei
dc.date.issued2022
dc.identifier.issn2095-5545
dc.description.abstractEnLaser-induced thermocapillary deformation of liquid surfaces has emerged as a promising tool to precisely characterize the thermophysical properties of pure fluids. However, challenges arise for nanofluid (NF) and soft bio-fluid systems where the direct interaction of the laser generates an intriguing interplay between heating, momentum, and scattering forces which can even damage soft biofluids. Here, we report a versatile, pump-probe-based, rapid, and non-contact interferometric technique that resolves interface dynamics of complex fluids with the precision of ~1 nm in thick-film and 150 pm in thin-film regimes below the thermal limit without the use of lock-in or modulated beams. We characterize the thermophysical properties of complex NF in three exclusively different types of configurations. First, when the NF is heated from the bottom through an opaque substrate, we demonstrate that our methodology permits the measurement of thermophysical properties (viscosity, surface tension, and diffusivity) of complex NF and biofluids. Second, in a top illumination configuration, we show a precise characterization of NF by quantitively isolating the competing forces, taking advantage of the different time scales of these forces. Third, we show the measurement of NF confined in a metal cavity, in which the transient thermoelastic deformation of the metal surface provides the properties of the NF as well as thermo-mechanical properties of the metal. Our results reveal how the dissipative nature of the heatwave allows us to investigate thick-film dynamics in the thin-film regime, thereby suggesting a general approach for precision measurements of complex NFs, biofluids, and optofluidic devices.
dc.language.isoen
dc.publisherNature Publishing Group
dc.title.enA versatile interferometric technique for probing the thermophysical properties of complex fluids
dc.typeArticle de revue
dc.identifier.doi10.1038/s41377-022-00796-7
dc.subject.halPhysique [physics]/Physique [physics]/Dynamique des Fluides [physics.flu-dyn]
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
dc.subject.halPhysique [physics]/Physique [physics]/Instrumentations et Détecteurs [physics.ins-det]
dc.subject.halPhysique [physics]/Physique [physics]/Optique [physics.optics]
bordeaux.journalLight: Science and Applications
bordeaux.page115
bordeaux.volume11
bordeaux.issue1
bordeaux.peerReviewedoui
hal.identifierhal-03660430
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03660430v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Light:%20Science%20and%20Applications&rft.date=2022&rft.volume=11&rft.issue=1&rft.spage=115&rft.epage=115&rft.eissn=2095-5545&rft.issn=2095-5545&rft.au=VERMA,%20Gopal&YADAV,%20Gyanendra&SARAJ,%20Chaudry&LI,%20Longnan&MILJKOVIC,%20Nenad&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem