Afficher la notice abrégée

hal.structure.identifierCentre de physique moléculaire optique et hertzienne [CPMOH]
dc.contributor.authorDELVILLE, Jean-Pierre
hal.structure.identifierCentre de physique moléculaire optique et hertzienne [CPMOH]
dc.contributor.authorROBERT DE SAINT VINCENT, Matthieu
hal.structure.identifierPhysics Department
hal.structure.identifierJames Franck Institute
dc.contributor.authorSCHROLL, Robert D.
hal.structure.identifierCentre de physique moléculaire optique et hertzienne [CPMOH]
dc.contributor.authorCHRAIBI, Hamza
hal.structure.identifierCentre de physique moléculaire optique et hertzienne [CPMOH]
dc.contributor.authorISSENMANN, Bruno
hal.structure.identifierCentre de physique moléculaire optique et hertzienne [CPMOH]
dc.contributor.authorWUNENBURGER, Regis
hal.structure.identifierTransferts, écoulements, fluides, énergétique [TREFLE]
dc.contributor.authorLASSEUX, Didier
hal.structure.identifierJames Franck Institute
dc.contributor.authorZHANG, Wendy W
hal.structure.identifierCentre de physique moléculaire optique et hertzienne [CPMOH]
dc.contributor.authorBRASSELET, Etienne
dc.date.created2008-07-28
dc.date.issued2009-01-20
dc.identifier.issn1464-4258
dc.description.abstractEnThe development of microfluidic devices is still hindered by the lack of robust fundamental building blocks that constitute any fluidic system. An attractive approach is optical actuation because light field interaction is contactless and dynamically reconfigurable, and solutions have been anticipated through the use of optical forces to manipulate microparticles in flows. Following the concept of an 'optical chip' advanced from the optical actuation of suspensions, we propose in this survey new routes to extend this concept to microfluidic two-phase flows. First, we investigate the destabilization of fluid interfaces by the optical radiation pressure and the formation of liquid jets. We analyze the droplet shedding from the jet tip and the continuous transport in laser-sustained liquid channels. In the second part, we investigate a dissipative light-flow interaction mechanism consisting in heating locally two immiscible fluids to produce thermocapillary stresses along their interface. This opto-capillary coupling is implemented in adequate microchannel geometries to manipulate two-phase flows and propose a contactless optical toolbox including valves, droplet sorters and switches, droplet dividers or droplet mergers. Finally, we discuss radiation pressure and opto-capillary effects in the context of the 'optical chip' where flows, channels and operating functions would all be performed optically on the same device.
dc.language.isoen
dc.publisherIOP Publishing
dc.subject.enoptical radiation pressure
dc.subject.enthermocapillary effects
dc.subject.enmicrofluidics
dc.title.enLaser microfluidics: fluid actuation by light
dc.typeArticle de revue
dc.identifier.doi10.1088/1464-4258/11/3/034015
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph]
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph]
dc.identifier.arxiv0903.1739
bordeaux.journalJournal of Optics A: Pure and Applied Optics
bordeaux.page034015
bordeaux.volume11
bordeaux.peerReviewedoui
hal.identifierhal-00366706
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00366706v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Optics%20A:%20Pure%20and%20Applied%20Optics&rft.date=2009-01-20&rft.volume=11&rft.spage=034015&rft.epage=034015&rft.eissn=1464-4258&rft.issn=1464-4258&rft.au=DELVILLE,%20Jean-Pierre&ROBERT%20DE%20SAINT%20VINCENT,%20Matthieu&SCHROLL,%20Robert%20D.&CHRAIBI,%20Hamza&ISSENMANN,%20Bruno&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée