Mostrar el registro sencillo del ítem

dc.contributor.authorSAMARAKOON, Anjana M.
dc.contributor.authorSOKOLOWSKI, Andre
dc.contributor.authorKLEMKE, Bastian
dc.contributor.authorFEYERHERM, Ralf
dc.contributor.authorMEISSNER, Michael
dc.contributor.authorBORZI, R. A.
dc.contributor.authorYE, Feng
dc.contributor.authorZHANG, Qiang
dc.contributor.authorDUN, Zhiling
dc.contributor.authorZHOU, Haidong
dc.contributor.authorEGAMI, T.
dc.contributor.authorHALLEN, Jonathan N.
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorJAUBERT, L.D.C.
dc.contributor.authorCASTELNOVO, Claudio
dc.contributor.authorMOESSNER, Roderich
dc.contributor.authorGRIGERA, S. A.
dc.contributor.authorTENNANT, D. Alan
dc.date.created2022
dc.date.issued2022-08-29
dc.identifier.issn2643-1564
dc.description.abstractEnThe origin and nature of glassy dynamics presents one of the central enigmas of condensed-matter physics across a broad range of systems ranging from window glass to spin glasses. The spin-ice compound Dy2Ti2O7, which is perhaps best known as hosting a three-dimensional Coulomb spin liquid with magnetically charged monopole excitations, also falls out of equilibrium at low temperature. How and why it does so remains an open question. Based on an analysis of low-temperature diffuse neutron-scattering experiments employing different cooling protocols alongside recent magnetic noise studies, combined with extensive numerical modeling, we argue that upon cooling, the spins freeze into what may be termed a “structural magnetic glass,” without an a priori need for chemical or structural disorder. Specifically, our model indicates the presence of frustration on two levels, first producing a near-degenerate constrained manifold inside which phase ordering kinetics is in turn frustrated. A remarkable feature is that monopoles act as sole annealers of the spin network and their pathways and history encode the development of glass dynamics, allowing the glass formation to be visualized. Our results suggest that spin ice Dy2Ti2O7 provides one prototype of magnetic glass formation specifically and a setting for the study of kinetically constrained systems more generally.
dc.language.isoen
dc.publisherAmerican Physical Society
dc.title.enStructural magnetic glassiness in spin ice Dy_2Ti_2O_7
dc.typeArticle de revue
dc.identifier.doi10.1103/PhysRevResearch.4.033159
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Mécanique statistique [cond-mat.stat-mech]
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Electrons fortement corrélés [cond-mat.str-el]
dc.identifier.arxiv2107.12305
bordeaux.journalPhysical Review Research
bordeaux.page033159
bordeaux.volume4
bordeaux.peerReviewedoui
hal.identifierhal-03302160
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03302160v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Physical%20Review%20Research&rft.date=2022-08-29&rft.volume=4&rft.spage=033159&rft.epage=033159&rft.eissn=2643-1564&rft.issn=2643-1564&rft.au=SAMARAKOON,%20Anjana%20M.&SOKOLOWSKI,%20Andre&KLEMKE,%20Bastian&FEYERHERM,%20Ralf&MEISSNER,%20Michael&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem