Afficher la notice abrégée

hal.structure.identifierCentre de physique moléculaire optique et hertzienne [CPMOH]
dc.contributor.authorVILLAIN-GUILLOT, Simon
hal.structure.identifierLaboratoire de modélisation en mécanique [LMM]
dc.contributor.authorJOSSERAND, Christophe
dc.date.created2001
dc.date.issued2002
dc.identifier.issn1539-3755
dc.description.abstractEnWe study the growth of a periodic pattern in one dimension for a model of spinodal decomposition, the Cahn-Hilliard equation. We particularly focus on the intermediate region, where the non-linearity cannot be negected anymore, and before the coalescence dominates. The dynamics is captured through the standard technique of a solubility condition performed over a particular family of quasi-static solutions. The main result is that the dynamics along this particular class of solutions can be expressed in terms of a simple ordinary differential equation. The density profile of the stationary regime found at the end of the non-linear growth is also well characterized. Numerical simulations correspond satisfactorily to the analytical results through three different methods and asymptotic dynamics are well recovered, even far from the region where the approximations hold.
dc.language.isoen
dc.publisherAmerican Physical Society
dc.title.enNon-linear growth of periodic patterns
dc.typeArticle de revue
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Mécanique statistique [cond-mat.stat-mech]
dc.identifier.arxivcond-mat/0011238
bordeaux.journalPhysical Review E : Statistical, Nonlinear, and Soft Matter Physics
bordeaux.page036308
bordeaux.volume66
bordeaux.peerReviewedoui
hal.identifierhal-00020497
hal.version1
hal.popularnon
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00020497v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Physical%20Review%20E%20:%20Statistical,%20Nonlinear,%20and%20Soft%20Matter%20Physics&rft.date=2002&rft.volume=66&rft.spage=036308&rft.epage=036308&rft.eissn=1539-3755&rft.issn=1539-3755&rft.au=VILLAIN-GUILLOT,%20Simon&JOSSERAND,%20Christophe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée