Mostrar el registro sencillo del ítem

hal.structure.identifierMax Planck Institute of Molecular Cell Biology and Genetics [MPI-CBG]
dc.contributor.authorNITZSCHE, Bert
hal.structure.identifierMax Planck Institute of Molecular Cell Biology and Genetics [MPI-CBG]
dc.contributor.authorBORMUTH, Volker
hal.structure.identifierMax Planck Institute of Molecular Cell Biology and Genetics [MPI-CBG]
dc.contributor.authorBRÄUER, Corina
hal.structure.identifierMax Planck Institute of Molecular Cell Biology and Genetics [MPI-CBG]
dc.contributor.authorHOWARD, Jonathon
hal.structure.identifierMax Planck Institute of Molecular Cell Biology and Genetics [MPI-CBG]
dc.contributor.authorIONOV, Leonid
hal.structure.identifierKavli Institute of Nanosciences [Delft] [KI-NANO]
dc.contributor.authorKERSSEMAKERS, Jacob
hal.structure.identifierMax Planck Institute of Molecular Cell Biology and Genetics [MPI-CBG]
dc.contributor.authorKORTEN, Till
hal.structure.identifierCentre de physique moléculaire optique et hertzienne [CPMOH]
dc.contributor.authorLEDUC, Cecile
hal.structure.identifierMax Planck Institute of Molecular Cell Biology and Genetics [MPI-CBG]
dc.contributor.authorRUHNOW, Felix
hal.structure.identifierMax Planck Institute of Molecular Cell Biology and Genetics [MPI-CBG]
dc.contributor.authorDIEZ, Stefan
dc.contributor.editorLeslie Wilson, John J. Correia
dc.date.issued2010
dc.identifier.isbn978-0-12-374815-7
dc.description.abstractEnRecent developments in optical microscopy and nanometer tracking have facilitated our understanding of microtubules and their associated proteins. Using fluorescence microscopy, dynamic interactions are now routinely observed in vitro on the level of single molecules, mainly using a geometry in which labeled motors move on surface-immobilized microtubules. Yet, we think that the historically older gliding geometry, in which motor proteins bound to a substrate surface drive the motion microtubules, offers some unique advantages. (1) Motility can be precisely followed by coupling multiple fluorophores and/or single bright labels to the surface of microtubules without disturbing the activity of the motor proteins. (2) The number of motor proteins involved in active transport can be determined by several strategies. (3) Multimotor studies can be performed over a wide range of motor densities. These advantages allow for studying cooperativity of processive as well as non-processive motors. Moreover, the gliding geometry has proven to be most promising for nanotechnological applications of motor proteins operating in synthetic environments. In this chapter we review recent methods related to gliding motility assays in conjunction with 3D-nanometry. In particular, we aim to provide practical advice on how to set up gliding assays, how to acquire high-precision data from microtubules and attached quantum dots, and how to analyze data by 3D-nanometer tracking.
dc.language.isoen
dc.publisherElsevier
dc.source.titleMicrotubules, in vitro
dc.title.enStudying Kinesin Motors by Optical 3D-Nanometry in Gliding Motility Assays
dc.typeChapitre d'ouvrage
dc.identifier.doi10.1016/S0091-679X(10)95014-0
bordeaux.page247-271
bordeaux.title.proceedingMicrotubules, in vitro
hal.identifierhal-00718948
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00718948v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=Microtubules,%20in%20vitro&rft.date=2010&rft.spage=247-271&rft.epage=247-271&rft.au=NITZSCHE,%20Bert&BORMUTH,%20Volker&BR%C3%84UER,%20Corina&HOWARD,%20Jonathon&IONOV,%20Leonid&rft.isbn=978-0-12-374815-7&rft.genre=unknown


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem