Afficher la notice abrégée

hal.structure.identifierGeorg-August-University = Georg-August-Universität Göttingen
dc.contributor.authorHAJEK, Peter
hal.structure.identifierGeorg-August-University = Georg-August-Universität Göttingen
dc.contributor.authorLEUSCHNER, Christoph
hal.structure.identifierGeorg-August-University = Georg-August-Universität Göttingen
dc.contributor.authorHERTEL, Dietrich
hal.structure.identifierBiodiversité, Gènes & Communautés [BioGeCo]
dc.contributor.authorDELZON, Sylvain
hal.structure.identifierGeorg-August-University = Georg-August-Universität Göttingen
dc.contributor.authorSCHULDT, Bernhard
dc.date.issued2014
dc.identifier.issn0829-318X
dc.description.abstractEnTrees face the dilemma that achieving high plant productivity is accompanied by a risk of drought-induced hydraulic failure due to a trade-off in the trees' vascular system between hydraulic efficiency and safety. By investigating the xylem anatomy of branches and coarse roots, and measuring branch axial hydraulic conductivity and vulnerability to cavitation in 4-year-old field-grown aspen plants of five demes (Populus tremula L. and Populus tremuloides Michx.) differing in growth rate, we tested the hypotheses that (i) demes differ in wood anatomical and hydraulic properties, (ii) hydraulic efficiency and safety are related to xylem anatomical traits, and (iii) aboveground productivity and hydraulic efficiency are negatively correlated to cavitation resistance. Significant deme differences existed in seven of the nine investigated branch-related anatomical and hydraulic traits but only in one of the four coarse-root-related anatomical traits; this likely is a consequence of high intra-plant variation in root morphology and the occurrence of a few 'high-conductivity roots'. Growth rate was positively related to branch hydraulic efficiency (xylem-specific conductivity) but not to cavitation resistance; this indicates that no marked trade-off exists between cavitation resistance and growth. Both branch hydraulic safety and hydraulic efficiency significantly depended on vessel size and were related to the genetic distance between the demes, while the xylem pressure causing 88% loss of hydraulic conductivity (P88 value) was more closely related to hydraulic efficiency than the commonly used P50 value. Deme-specific variation in the pit membrane structure may explain why vessel size was not directly linked to growth rate. We conclude that branch hydraulic efficiency is an important growth-influencing trait in aspen, while the assumed trade-off between productivity and hydraulic safety is weak.
dc.language.isoen
dc.publisherOxford University Press (OUP)
dc.subjectvessel diameter
dc.subject.enP50
dc.subject.encoarse root and branch xylem anatomy
dc.subject.engenetic variability
dc.subject.enhigh-conductivity roots
dc.subject.enhydraulic conductivity
dc.subject.enrelative growth rate
dc.subject.envulnerability to cavitation
dc.title.enTrade-offs between xylem hydraulic properties, wood anatomy and yield in Populus
dc.typeArticle de revue
dc.identifier.doi10.1093/treephys/tpu048
dc.subject.halSciences du Vivant [q-bio]
bordeaux.journalTree Physiology
bordeaux.page744-756
bordeaux.volume34
bordeaux.issue7
bordeaux.peerReviewedoui
hal.identifierhal-02640269
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02640269v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Tree%20Physiology&rft.date=2014&rft.volume=34&rft.issue=7&rft.spage=744-756&rft.epage=744-756&rft.eissn=0829-318X&rft.issn=0829-318X&rft.au=HAJEK,%20Peter&LEUSCHNER,%20Christoph&HERTEL,%20Dietrich&DELZON,%20Sylvain&SCHULDT,%20Bernhard&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée