Mostrar el registro sencillo del ítem

hal.structure.identifierDynamics, Logics and Inference for biological Systems and Sequences [Dyliss]
dc.contributor.authorBELCOUR, Arnaud
hal.structure.identifierDynamics, Logics and Inference for biological Systems and Sequences [Dyliss]
dc.contributor.authorGOT, Jeanne
hal.structure.identifierDynamics, Logics and Inference for biological Systems and Sequences [Dyliss]
dc.contributor.authorAITE, Méziane
hal.structure.identifierLaboratoire de Biologie Intégrative des Modèles Marins [LBI2M]
dc.contributor.authorDELAGE, Ludovic
hal.structure.identifierLaboratoire de Biologie Intégrative des Modèles Marins [LBI2M]
dc.contributor.authorCOLLEN, Jonas
hal.structure.identifierPleiade, from patterns to models in computational biodiversity and biotechnology [PLEIADE]
dc.contributor.authorFRIOUX, Clémence
hal.structure.identifierLaboratoire de Biologie Intégrative des Modèles Marins [LBI2M]
dc.contributor.authorLEBLANC, Catherine
hal.structure.identifierLaboratoire de Biologie Intégrative des Modèles Marins [LBI2M]
dc.contributor.authorDITTAMI, Simon
hal.structure.identifierDynamics, Logics and Inference for biological Systems and Sequences [Dyliss]
dc.contributor.authorBLANQUART, Samuel
hal.structure.identifierLaboratoire de Biologie Intégrative des Modèles Marins [LBI2M]
dc.contributor.authorMARKOV, Gabriel
hal.structure.identifierDynamics, Logics and Inference for biological Systems and Sequences [Dyliss]
dc.contributor.authorSIEGEL, Anne
dc.description.abstractEnComparative analysis of Genome-Scale Metabolic Networks (GSMNs) may yield important information on the biology, evolution, and adaptation of species. However, it is impeded by the high heterogeneity of the quality and completeness of structural and functional genome annotations, which may bias the results of such comparisons. To address this issue, we developed AuCoMe-a pipeline to automatically reconstruct homogeneous GSMNs from a heterogeneous set of annotated genomes without discarding available manual annotations. We tested AuCoMe with three datasets, one bacterial, one fungal, and one algal, and demonstrated that it successfully reduces technical biases while capturing the metabolic specificities of each organism. Our results also point out shared metabolic traits and divergence points among evolutionarily distant species, such as algae, underlining the potential of AuCoMe to accelerate the broad exploration of metabolic evolution across the tree of life.
dc.language.isoen
dc.subject.enBioinformatics
dc.subject.enProteins genomics
dc.subject.enmetabolism
dc.subject.enmetabolic evolution
dc.subject.engenomes
dc.subject.ensystems biology
dc.title.enAuCoMe: inferring and comparing metabolisms across heterogeneous sets of annotated genomes
dc.typeDocument de travail - Pré-publication
dc.identifier.doi10.1101/2022.06.14.496215
dc.subject.halInformatique [cs]/Bio-informatique [q-bio.QM]
hal.identifierhal-03778267
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03778267v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=BELCOUR,%20Arnaud&GOT,%20Jeanne&AITE,%20M%C3%A9ziane&DELAGE,%20Ludovic&COLLEN,%20Jonas&rft.genre=preprint


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem