Afficher la notice abrégée

hal.structure.identifierPHysicochimie des Electrolytes et Nanosystèmes InterfaciauX [PHENIX]
dc.contributor.authorDAMBOURNET, Damien
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
hal.structure.identifierPHysicochimie des Electrolytes et Nanosystèmes InterfaciauX [PHENIX]
dc.contributor.authorDUTTINE, Mathieu
hal.structure.identifierX-ray Science Division [XSD]
dc.contributor.authorCHAPMAN, Karena W.
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorWATTIAUX, Alain
hal.structure.identifierX-ray Science Division [XSD]
dc.contributor.authorBORKIEWICZ, Olaf
hal.structure.identifierX-ray Science Division [XSD]
dc.contributor.authorCHUPAS, Peter J.
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorDEMOURGUES, Alain
hal.structure.identifierPHysicochimie des Electrolytes et Nanosystèmes InterfaciauX [PHENIX]
dc.contributor.authorGROULT, Henri
dc.date.issued2014
dc.identifier.issn1932-7447
dc.description.abstractEnProbing the atomic structure of materials displaying a lack of long-range order has been a continuous challenge for the material science’s community. X-ray amorphous FeF3 has been shown to be a promising electrode material in Li and Na ion batteries. Providing structural information on this class of compounds is therefore of interest as it can help rationalize the material’s properties and further enabled its optimization. Herein, we used the pair distribution function and Mössbauer spectroscopy to provide unique insights into the atomic structure of amorphous FeF3. The results showed that amorphous FeF3 contained two phases built from corner-sharing of FeF6 octahedra. According to X-ray diffraction data, the PDF was successfully modeled based on two structural models related to the distorted ReO3 and the hexagonal-tungsten-bronze networks of FeF3. The lack of long-range order shown by conventional XRD data and PDF analysis was shown to arise mostly from disorder. This study provides detailed atomic structure with corresponding spectroscopic signature of amorphous phases. Quantitative analysis of both techniques indicated similar trends. This showed that our approach can be employed to determine the structure of other complex materials.
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.title.enResolving and quantifying nanoscaled phases in amorphous FeF3 by pair distribution fucntion and Mössbauer spectroscopy
dc.typeArticle de revue
dc.identifier.doi10.1021/jp504083g
dc.subject.halChimie/Matériaux
dc.description.sponsorshipEuropeREA Grant Agreement
bordeaux.journalJournal of Physical Chemistry C
bordeaux.page14039-14043
bordeaux.volume118
bordeaux.issue25
bordeaux.peerReviewedoui
hal.identifierhal-01078519
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01078519v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Physical%20Chemistry%20C&rft.date=2014&rft.volume=118&rft.issue=25&rft.spage=14039-14043&rft.epage=14039-14043&rft.eissn=1932-7447&rft.issn=1932-7447&rft.au=DAMBOURNET,%20Damien&DUTTINE,%20Mathieu&CHAPMAN,%20Karena%20W.&WATTIAUX,%20Alain&BORKIEWICZ,%20Olaf&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée