Mostrar el registro sencillo del ítem

hal.structure.identifierDepartment of Materials [ETH Zürich] [D-MATL]
dc.contributor.authorLILIENBLUM, Martin
hal.structure.identifierDepartment of Materials [ETH Zürich] [D-MATL]
dc.contributor.authorLOTTERMOSER, Thomas
hal.structure.identifierDepartment of Materials [ETH Zürich] [D-MATL]
dc.contributor.authorMANZ, Sebastian
hal.structure.identifierDepartment of Materials Science and Engineering [Trondheim]
dc.contributor.authorSELBACH, Sverre M.
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorCANO, Andres
hal.structure.identifierDepartment of Materials [ETH Zürich] [D-MATL]
dc.contributor.authorFIEBIG, Manfred
dc.date.issued2015
dc.identifier.issn1745-2473
dc.description.abstractEnSince their discovery in 1963 the hexagonal manganites have consolidated their role as exotic ferroelectrics with astonishingfunctionalities. Their introduction as room-temperature device ferroelectrics was followed by observations of giantflexoelectricity, multiferroicity with magnetoelectric domain and domain-wall coupling, protected vortex domain structures,topological domain-scaling behaviour and domain walls with tunable conductance and magnetism. Even after half a century,however, the emergence of the ferroelectric state has remained the subject of fierce debate.We resolve the interplay of electricpolarization, topological trimerization and temperature by direct access to the polarization for temperatures up to 1,400 K.Nonlinear optical experiments and piezoresponse force microscopy, complemented by Monte Carlo simulations, reveal asingle phase transition with ferroelectricity determined by topology rather than electrostatics. Fundamental properties ofthe hexagonal manganites, including an explanation for the two-phase-transition controversy as a finite-size scaling eect,are derived from this and highlight why improper ferroelectrics are an inherent source of novel functionalities.
dc.language.isoen
dc.publisherNature Publishing Group
dc.title.enFerroelectricity in the multiferroic hexagonal manganites
dc.typeArticle de revue
dc.identifier.doi10.1038/nphys3468
dc.subject.halChimie/Matériaux
bordeaux.journalNature Physics
bordeaux.page1070-1073
bordeaux.volume11
bordeaux.issue12
bordeaux.peerReviewedoui
hal.identifierhal-01239698
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01239698v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nature%20Physics&rft.date=2015&rft.volume=11&rft.issue=12&rft.spage=1070-1073&rft.epage=1070-1073&rft.eissn=1745-2473&rft.issn=1745-2473&rft.au=LILIENBLUM,%20Martin&LOTTERMOSER,%20Thomas&MANZ,%20Sebastian&SELBACH,%20Sverre%20M.&CANO,%20Andres&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem