Afficher la notice abrégée

hal.structure.identifierLaboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux [LITEN]
dc.contributor.authorBERNADET, Lucile
hal.structure.identifierLaboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux [LITEN]
dc.contributor.authorLAURENCIN, Jérôme
hal.structure.identifierLaboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux [LITEN]
dc.contributor.authorROUX, Guilhem
hal.structure.identifierSOLIDpower S.p.A.
dc.contributor.authorMONTINARO, Dario
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorMAUVY, Fabrice
hal.structure.identifierLaboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux [LITEN]
dc.contributor.authorREYTIER, Magali
dc.date.issued2017-11
dc.identifier.issn0013-4686
dc.description.abstractEnExperiments have been performed in pressurized co-electrolysis mode at 800 °C on a typical Ni-YSZ//YSZ//CGO-LSCF cell. The polarization curves and the composition of the produced syngas have been measured at 1 bar and 10 bar. It has been found that the cell performances are improved under pressure at 1.3 V. The gas analyses have revealed that the methane formation is only activated under polarization and pressure. These experimental results have been used to validate a model which encompasses a chemical and electrochemical description of the co-electrolyser combined with a mass transport module. It has been found that the model is able to predict accurately the polarization curves as well as the syngas compositions at the cell outlet. Once validated, the model has been used to analyze the operating mechanisms in pressurized co-electrolysis. The impact of pressure on the mass transfer, the electrochemical and chemical reactions has been discussed. The close interaction between the electrochemical and chemical reactions for the internal production of CH4 has been specifically highlighted. Finally, operating maps have been computed at 10 bar from 700 °C to 800 °C. These simulations have shown that formation of CH4 in the co-electrolyser remains limited at 700 °C.
dc.language.isoen
dc.publisherElsevier
dc.subject.enSOEC
dc.subject.enCo-electrolysis
dc.subject.enPressure
dc.subject.enExperiment
dc.subject.enModelling
dc.title.enEffects of pressure on high temperature steam and carbon dioxide Co-electrolysis
dc.typeArticle de revue
dc.identifier.doi10.1016/j.electacta.2017.09.037
dc.subject.halChimie/Matériaux
bordeaux.journalElectrochimica Acta
bordeaux.page114-127
bordeaux.volume253
bordeaux.peerReviewedoui
hal.identifierhal-01624821
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01624821v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Electrochimica%20Acta&rft.date=2017-11&rft.volume=253&rft.spage=114-127&rft.epage=114-127&rft.eissn=0013-4686&rft.issn=0013-4686&rft.au=BERNADET,%20Lucile&LAURENCIN,%20J%C3%A9r%C3%B4me&ROUX,%20Guilhem&MONTINARO,%20Dario&MAUVY,%20Fabrice&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée