Afficher la notice abrégée

hal.structure.identifierDepartment of Electrical Engineering
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorAZINA, Clio
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorROGER, Jerome
hal.structure.identifierPhysique des Défauts et de la Plasticité [Institut Pprime] [PDP]
dc.contributor.authorJOULAIN, Anne
hal.structure.identifierPhysique et Propriétés des Nanostructures [Institut Pprime] [PPNa]
dc.contributor.authorMAUCHAMP, Vincent
hal.structure.identifierDGA/Mission pour la Recherche et l'Innovation Scientifique [DGA/MRIS]
dc.contributor.authorMORTAIGNE, Bruno
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorLU, Yongfeng
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorSILVAIN, Jean-François
dc.date.issued2018
dc.identifier.issn0925-8388
dc.description.abstractEnMetal matrix composites are currently being investigated for thermal management applications. In the case of a copper/carbon (Cu/C) composite system, a particular issue is the lack of affinity between the Cu matrix and the C reinforcements. Titanium-alloyed Cu (Cu-Ti) powders were introduced in a Cu/C powder mixture and sintered under load at a temperature at which the Cu-Ti powders became liquid, while the rest of the Cu and C remained solid. Fully dense materials were obtained (porosity of less than 5%). The creation of regular and homogeneous interphases was confirmed. All Ti reacted with the carbon, hence purifying the Cu matrix. Thermal conductivities were enhanced as compared with the Cu/C composites without interphase. The chemical analyses are in agreement with thermodynamic simulations carried out to predict the phase transformation during the sintering process.
dc.description.sponsorshipInteractions and transfers at fluids and solids interfaces - ANR-11-LABX-0017
dc.language.isoen
dc.publisherElsevier
dc.subject.enCALPHAD
dc.subject.enconduction
dc.subject.enmetal matrix composites
dc.subject.enheat
dc.subject.ensolid-liquid co-existent phase process
dc.title.enSolid-liquid co-existent phase process: towards fully dense and thermally efficient Cu/C composite materials
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jallcom.2017.12.196
dc.subject.halChimie/Matériaux
bordeaux.journalJournal of Alloys and Compounds
bordeaux.page292-300
bordeaux.volume738
bordeaux.peerReviewedoui
hal.identifierhal-01686477
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01686477v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Alloys%20and%20Compounds&rft.date=2018&rft.volume=738&rft.spage=292-300&rft.epage=292-300&rft.eissn=0925-8388&rft.issn=0925-8388&rft.au=AZINA,%20Clio&ROGER,%20Jerome&JOULAIN,%20Anne&MAUCHAMP,%20Vincent&MORTAIGNE,%20Bruno&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée