Afficher la notice abrégée

hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorHÉRISSON DE BEAUVOIR, Thomas
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorMOLINARI, F.
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorCHUNG-SEU, U-Chan
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorMICHAU, Dominique
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorDENUX, Dominique
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorJOSSE, Michaël
dc.date.issued2018
dc.identifier.issn0955-2219
dc.description.abstractEnDense ceramics of MnSO4 composition have been successfully densified at 400 °C in only 5 min under a uniaxial pressure of 400 MPa, using Spark Plasma Sintering technique. Since the stable form of MnSO4 in ambient atmosphere is its hydrate MnSO4·H2O, crystallizing in a different space group, dehydration is required to reach a purely anhydrous phase. In situ dehydration during Spark Plasma Sintering allows to lower both sintering temperature and time. Applied pressure strongly influences dehydration step and therefore is a key parameter to tune densification, so far as to obtain a dense MnSO4·H2O ceramic. The presence of a reversible phase transition to a β-MnSO4 high temperature form seems to influence the dehydration temperature under pressure, and likely drives the sintering mechanisms. The high densification obtained, beyond 95% of theoretical density, added to the preservation of the structural and physical properties of MnSO4 after sintering allowed to perform reliable and reproducible measurements showing a dielectric anomaly associated to the magnetic transition, and the hysteretic behaviour of capacitance versus magnetic field, which is a clue for an intrinsic magnetoelectric coupling in MnSO4.
dc.language.isoen
dc.publisherElsevier
dc.subject.enLow temperature
dc.subject.enSpark Plasma Sintering
dc.subject.enCool-SPS
dc.subject.enMagnetoelectric
dc.subject.enCeramics
dc.title.enDensification of MnSO4 ceramics by Cool-SPS: Evidences for a complex sintering mechanism and magnetoelectric coupling
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jeurceramsoc.2018.04.005
dc.subject.halChimie/Matériaux
bordeaux.journalJournal of the European Ceramic Society
bordeaux.page3867-3874
bordeaux.volume38
bordeaux.issue11
bordeaux.peerReviewedoui
hal.identifierhal-01815090
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01815090v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20the%20European%20Ceramic%20Society&rft.date=2018&rft.volume=38&rft.issue=11&rft.spage=3867-3874&rft.epage=3867-3874&rft.eissn=0955-2219&rft.issn=0955-2219&rft.au=H%C3%89RISSON%20DE%20BEAUVOIR,%20Thomas&MOLINARI,%20F.&CHUNG-SEU,%20U-Chan&MICHAU,%20Dominique&DENUX,%20Dominique&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée