Afficher la notice abrégée

hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorPRAKASAM, Mythili
hal.structure.identifierThermo Fisher Scientific
dc.contributor.authorCHIRAZI, Ali
hal.structure.identifierThermo Fisher Scientific
dc.contributor.authorPYKA, Grzegorz
hal.structure.identifierThermo Fisher Scientific
dc.contributor.authorPROKHODTSEVA, Anna
hal.structure.identifierThermo Fisher Scientific
dc.contributor.authorLICHAU, Daniel
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorLARGETEAU, Alain
dc.date.issued2018
dc.identifier.issn2079-4983
dc.description.abstractEnBiomaterial for tissue engineering is a topic of huge progress with a recent surge in fabrication and characterization advances. Biomaterials for tissue engineering applications or as scaffolds depend on various parameters such as fabrication technology, porosity, pore size, mechanical strength, and surface available for cell attachment. To serve the function of the scaffold, the porous biomaterial should have enough mechanical strength to aid in tissue engineering. With a new manufacturing technology, we have obtained high strength materials by optimizing a few processing parameters such as pressure, temperature, and dwell time, yielding the monolith with porosity in the range of 80%–93%. The three-dimensional interconnectivity of the porous media through scales for the newly manufactured biomaterial has been investigated using newly developed 3D correlative and multi-modal imaging techniques. Multiscale X-ray tomography, FIB-SEM Slice & View stacking, and high-resolution STEM-EDS electronic tomography observations have been combined allowing quantification of morphological and geometrical spatial distributions of the multiscale porous network through length scales spanning from tens of microns to less than a nanometer. The spatial distribution of the wall thickness has also been investigated and its possible relationship with pore connectivity and size distribution has been studied.
dc.language.isoen
dc.publisherMDPI
dc.rights.urihttp://creativecommons.org/licenses/by-nd/
dc.subject.entissue engineering
dc.subject.enporous materials
dc.subject.enmicrostructure
dc.subject.enbiomaterials
dc.subject.enbone regeneration
dc.title.enFabrication and multiscale structural properties of interconnected porous biomaterial for tissue engineering by Freeze Isostatic Pressure (FIP)
dc.typeArticle de revue
dc.identifier.doi10.3390/jfb9030051
dc.subject.halChimie/Matériaux
bordeaux.journalJournal of Functional Biomaterials
bordeaux.page51-63
bordeaux.volume9
bordeaux.issue3
bordeaux.peerReviewedoui
hal.identifierhal-01865056
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01865056v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Functional%20Biomaterials&rft.date=2018&rft.volume=9&rft.issue=3&rft.spage=51-63&rft.epage=51-63&rft.eissn=2079-4983&rft.issn=2079-4983&rft.au=PRAKASAM,%20Mythili&CHIRAZI,%20Ali&PYKA,%20Grzegorz&PROKHODTSEVA,%20Anna&LICHAU,%20Daniel&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée