Afficher la notice abrégée

hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorZHANG, Fan
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorERRIGUIBLE, Arnaud
hal.structure.identifierIFP Energies nouvelles [IFPEN]
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorGAVOILLE, Théo
hal.structure.identifierDepartment of Chemical Engineering
dc.contributor.authorTIMKO, Mike
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorMARRE, Samuel
dc.date.issued2018
dc.identifier.issn2469-990X
dc.description.abstractEnMicrofluidics have been used extensively for the study of flows of immiscible fluids, with a specific focus on the effects of interfacial forces on flow behavior. In comparison, inertia-driven flow of confined coflowing fluids has received scant attention at the microscale, despite the fact that the effects of microscale confinement are expected to influence inertia-driven flow behavior as observed in free jets. Herein, we report three distinct modes for breakup of coflowing, confined, microscale jets: the conventional Rayleigh mode and two additional inertia-driven modes occurring at higher Reynolds number flows, namely, a sinuous wave breakup and an atomizationlike mode. Each of the three modes is differentiated by a characteristic droplet size, size distribution, and dependence of the jet length as a function of the external fluid velocity (vext). A unified phase diagram is proposed to categorize the jet breakup mechanisms and their transitions using, as a scale-up factor, the ratio of the jet inertial forces to the sum of the viscous and interfacial forces for both the inner and outer fluids. These results provide fundamental insights into the flow behavior of microscale-confined coflowing jets.
dc.description.sponsorshipSynthèse de nanocristaux organiques fluorescents en milieu fluide supercritique: une approche numérique et expérimentale complémentaire - ANR-17-CE07-0029
dc.description.sponsorshipMicro-laboratoires géologiques sur puce pour l'étude des processus clés du transport réactif multiphasique appliqués au stockage géologique du CO2. - ANR-12-SEED-0001
dc.language.isoen
dc.publisherAmerican Physical Society
dc.title.enInertia-driven jetting regimes in microfluidic coflows
dc.typeArticle de revue
dc.identifier.doi10.1103/PhysRevFluids.3.092201
dc.subject.halChimie/Matériaux
bordeaux.journalPhysical Review Fluids
bordeaux.page092201(R) (9 p.)
bordeaux.volume9
bordeaux.issue3
bordeaux.peerReviewedoui
hal.identifierhal-01866650
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01866650v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Physical%20Review%20Fluids&rft.date=2018&rft.volume=9&rft.issue=3&rft.spage=092201(R)%20(9%20p.)&rft.epage=092201(R)%20(9%20p.)&rft.eissn=2469-990X&rft.issn=2469-990X&rft.au=ZHANG,%20Fan&ERRIGUIBLE,%20Arnaud&GAVOILLE,%20Th%C3%A9o&TIMKO,%20Mike&MARRE,%20Samuel&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée