Mostrar el registro sencillo del ítem

hal.structure.identifierKey Laboratory of Functional Inorganic Materials Chemistry of Ministry of Education
dc.contributor.authorGAO, Lei
hal.structure.identifierKey Laboratory of Functional Inorganic Materials Chemistry of Ministry of Education
dc.contributor.authorLI, Qiang
hal.structure.identifierKey Laboratory of Functional Inorganic Materials Chemistry of Ministry of Education
dc.contributor.authorSUN, Liping
hal.structure.identifierKey Laboratory of Functional Inorganic Materials Chemistry of Ministry of Education
dc.contributor.authorXIA, Tian
hal.structure.identifierKey Laboratory of Functional Inorganic Materials Chemistry of Ministry of Education
dc.contributor.authorHUO, Lihua
hal.structure.identifierKey Laboratory of Functional Inorganic Materials Chemistry of Ministry of Education
dc.contributor.authorZHAO, Hui
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorGRENIER, Jean-Claude
dc.date.issued2018
dc.identifier.issn2050-7488
dc.description.abstractEnThe perovskite oxide Bi0.5Sr0.5Fe0.90Sb0.10O3−δ (BSFS) is evaluated as an efficient Fe-based cathode for low-temperature solid oxide fuel cells (LT-SOFCs). The BSFS material possesses a single cubic perovskite structure. The Sb-doping strategy is proven to be beneficial towards the structure stability of pristine Bi0.5Sr0.5FeO3−δ. A BSFS cathode shows an efficient electrocatalytic activity for the oxygen reduction reaction (ORR). The lowest polarization resistance (Rp) value of 0.098 Ω cm2 is obtained and the anode supported fuel cell gives a remarkable peak power density of 0.95 W cm2 at 600 °C, which is comparable to that of state-of-the-art Co-based materials. The prominent performance is ascribed to the comparable TEC value and the large amount of oxygen vacancies generated at high temperatures. Moreover, the BSFS cathode also exhibits excellent CO2 tolerance under exposure to 10 vol% CO2 at 600 °C for 24 h. These features highlight the potential applicability of the BSFS material as a highly promising cathode material for LT-SOFCs.
dc.language.isoen
dc.publisherRoyal Society of Chemistry
dc.title.enAntimony-doped Bi0.5Sr0.5FeO3−δ as a novel Fe-based oxygen reduction electrocatalyst for solid oxide fuel cells below 600 °C
dc.typeArticle de revue
dc.identifier.doi10.1039/C8TA04222E
dc.subject.halChimie/Matériaux
bordeaux.journalJournal of Materials Chemistry A
bordeaux.page15221-15229
bordeaux.volume6
bordeaux.issue31
bordeaux.peerReviewedoui
hal.identifierhal-01933551
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01933551v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Materials%20Chemistry%20A&rft.date=2018&rft.volume=6&rft.issue=31&rft.spage=15221-15229&rft.epage=15221-15229&rft.eissn=2050-7488&rft.issn=2050-7488&rft.au=GAO,%20Lei&LI,%20Qiang&SUN,%20Liping&XIA,%20Tian&HUO,%20Lihua&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem