Afficher la notice abrégée

hal.structure.identifierDepartment of Materials Science and Engineering
hal.structure.identifierAdvanced Materials and Manufacturing Processes Institute
dc.contributor.authorCHOUDHURI, Deep
hal.structure.identifierAdvanced Materials and Manufacturing Processes Institute
hal.structure.identifierDepartment of Materials Science and Engineering
dc.contributor.authorGWALANI, Bharat
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorGORSSE, Stéphane
hal.structure.identifierDepartment of Materials Science and Engineering
dc.contributor.authorKOMARASAMY, Mageshwari
hal.structure.identifierDepartment of Materials Science and Engineering
dc.contributor.authorMANTRI, Srinivas
hal.structure.identifierAdvanced Materials and Manufacturing Processes Institute
dc.contributor.authorSRINIVASAN, Srivilliputhur
hal.structure.identifierAdvanced Materials and Manufacturing Processes Institute
hal.structure.identifierDepartment of Materials Science and Engineering
dc.contributor.authorMISHRA, Rajiv
hal.structure.identifierAdvanced Materials and Manufacturing Processes Institute
hal.structure.identifierDepartment of Materials Science and Engineering
dc.contributor.authorBANERJEE, Rajarshi
dc.date.issued2019-02
dc.identifier.issn1359-6454
dc.description.abstractEnTwinning is a key deformation mechanism in face-centered-cubic (fcc)-based and some body-centered-cubic (bcc)-based alloys, which imparts excellent strength-ductility combination by increasing strain-hardenability. Typically, twinning in fcc-based alloys increases when the stacking fault energy is lowered via changes in composition. The present study clearly demonstrates that deformation twinning can be enhanced when hard-intermetallic compounds like ordered B2 and sigma phases form in the fcc matrix of a high entropy alloy (HEA), leading to an excellent combination of strength, ductility, and strain-hardenability. Such a combination of properties was achieved by exploiting the novel and often unusual phase stability regimes that can be accessed in these complex concentrated HEAs. The present study exploits a unique three-phase mixture of recrystallized fine-grained fcc + B2 + sigma in a prototypical Al0.3CoCrFeNi HEA to demonstrate this effect. Coupling transmission electron microscopy and molecular dynamics simulations revealed that B2 grains enhance deformation twinning by raising the local stress levels, consequently forming substantially thicker twins as compared to the single fcc-phase condition of Al0.3CoCrFeNi. The local stresses were further accommodated via nano-twinning, limited B2 plasticity, and highly restricted micro-cracks in and around the sigma grains.
dc.language.isoen
dc.publisherElsevier
dc.title.enEnhancing strength and strain hardenability via deformation twinning in fcc-based high entropy alloys reinforced with intermetallic compounds
dc.typeArticle de revue
dc.identifier.doi10.1016/j.actamat.2018.12.010
dc.subject.halChimie/Matériaux
bordeaux.journalActa Materialia
bordeaux.page420-430
bordeaux.volume165
bordeaux.peerReviewedoui
hal.identifierhal-02019470
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02019470v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Acta%20Materialia&rft.date=2019-02&rft.volume=165&rft.spage=420-430&rft.epage=420-430&rft.eissn=1359-6454&rft.issn=1359-6454&rft.au=CHOUDHURI,%20Deep&GWALANI,%20Bharat&GORSSE,%20St%C3%A9phane&KOMARASAMY,%20Mageshwari&MANTRI,%20Srinivas&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée