Afficher la notice abrégée

hal.structure.identifierLaboratoire de Synthèse et Fonctionnalisation des Céramiques [LSFC]
hal.structure.identifierMatériaux Interfaces ELectrochimie [MIEL ]
dc.contributor.authorSALLES, C.
hal.structure.identifierMatériaux Interfaces ELectrochimie [MIEL ]
dc.contributor.authorSTEIL, Marlu César
hal.structure.identifierMatériaux Interfaces ELectrochimie [MIEL ]
dc.contributor.authorFOULETIER, Jacques
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorDUTTINE, Mathieu
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorWATTIAUX, Alain
hal.structure.identifierLaboratoire de Synthèse et Fonctionnalisation des Céramiques [LSFC]
dc.contributor.authorMARINHA, Daniel
dc.date.issued2019-08
dc.identifier.issn0376-7388
dc.description.abstractEnOxygen transport membranes (OTM) are widely considered as a possible solution to limit the carbon footprint, but are notoriously afflicted by performance issues due to chemical instability observed during long-term operation. This paper reports on the stability of an OTM made of CaTi0.9Fe0.1O3−δ (CTF), and addresses its applicability. The redox stability of CTF was investigated using thermal gravimetry up to 1000 °C under air and H2, coupled with XRD and Mössbauer analyses. The redox potential of iron was measured using an electrochemical potential relaxation as a function of temperature. The baseline oxygen semi-permeability flux of dense CTF membranes was measured in inert atmospheres (air/argon or air/helium), and the long-term stability established for up to 1600 h under simulated operation atmospheres containing CO, CO2, H2 and CH4. CTF shows a remarkable performance stability and post mortem XRD, SEM-EDS and Raman analyses show no evidence of decomposition or reaction byproducts.
dc.language.isoen
dc.publisherElsevier
dc.subject.enOxygen transport membranes
dc.subject.enOxycombustion
dc.subject.enMethane
dc.subject.enStability
dc.subject.enAgeing
dc.subject.enCTF
dc.subject.enOTM
dc.title.enLong-term stability of iron-doped calcium titanate CaTi0.9Fe0.1O3−δ oxygen transport membranes under non-reactive and reactive atmospheres
dc.typeArticle de revue
dc.identifier.doi10.1016/j.memsci.2019.04.049
dc.subject.halChimie/Matériaux
bordeaux.journalJournal of Membrane Science
bordeaux.page171-179
bordeaux.volume583
bordeaux.peerReviewedoui
hal.identifierhal-02131783
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02131783v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Membrane%20Science&rft.date=2019-08&rft.volume=583&rft.spage=171-179&rft.epage=171-179&rft.eissn=0376-7388&rft.issn=0376-7388&rft.au=SALLES,%20C.&STEIL,%20Marlu%20C%C3%A9sar&FOULETIER,%20Jacques&DUTTINE,%20Mathieu&WATTIAUX,%20Alain&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée