Afficher la notice abrégée

hal.structure.identifierDepartment of Physics and Astronomy [Charleston]
dc.contributor.authorOPRISAN, Ana
hal.structure.identifierESEME : Équipe du Supercritique pour l'Environnement, les Matériaux et l'Espace : Équipe commune CEA-CNRS (2000-2014)
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorGARRABOS, Yves
hal.structure.identifierESEME : Équipe du Supercritique pour l'Environnement, les Matériaux et l'Espace : Équipe commune CEA-CNRS (2000-2014)
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorLECOUTRE-CHABOT, Carole
hal.structure.identifierESEME : Équipe du Supercritique pour l'Environnement, les Matériaux et l'Espace : Équipe commune CEA-CNRS (2000-2014)
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorLECOUTRE, Carole
hal.structure.identifierService des Basses Températures [SBT ]
hal.structure.identifierPhysique et mécanique des milieux hétérogenes (UMR 7636) [PMMH]
dc.contributor.authorBEYSENS, Daniel
dc.date.issued2017
dc.identifier.issn1420-3049
dc.description.abstractEnPhase transition in fluids is ubiquitous in nature and has important applications in areas such as the food industry for volatile oils’ extraction or in nuclear plants for heat transfer. Fundamentals are hampered by gravity effects on Earth. We used direct imaging to record snapshots of phase separation that takes place in sulfur hexafluoride, SF6, under weightlessness conditions on the International Space Station (ISS). The system was already at liquid-vapor equilibrium slightly below the critical temperature and further cooled down by a 0.2-mK temperature quench that produced a new phase separation. Both full view and microscopic views of the direct observation cell were analyzed to determine the evolution of the radii distributions. We found that radii distributions could be well approximated by a lognormal function. The fraction of small radii droplets declined while the fraction of large radii droplets increased over time. Phase separation at the center of the sample cell was visualized using a 12× microscope objective, which corresponds to a depth of focus of about 5 μ m. We found that the mean radii of liquid droplets exhibit a t1/3 evolution, in agreement with growth driven by Brownian coalescence. It was also found that the mean radii of the vapor bubbles inside the liquid majority phase exhibit a t1/2 evolution, which suggest a possible directional motion of vapor bubbles due to the influence of weak remaining gravitational field and/or a composition Marangoni force.
dc.language.isoen
dc.publisherMDPI
dc.subject.enmicrogravity
dc.subject.enbinary coalescence
dc.subject.enphase separation
dc.title.enPattern evolution during double liquid-vapor phase transitions under weightlessness
dc.typeArticle de revue
dc.identifier.doi10.3390/molecules22060947
dc.subject.halChimie/Matériaux
dc.subject.halPhysique [physics]/Physique [physics]/Physique de l'espace [physics.space-ph]
bordeaux.journalMolecules
bordeaux.page947
bordeaux.volume22
bordeaux.issue6
bordeaux.peerReviewedoui
hal.identifierhal-01539223
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01539223v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Molecules&rft.date=2017&rft.volume=22&rft.issue=6&rft.spage=947&rft.epage=947&rft.eissn=1420-3049&rft.issn=1420-3049&rft.au=OPRISAN,%20Ana&GARRABOS,%20Yves&LECOUTRE-CHABOT,%20Carole&LECOUTRE,%20Carole&BEYSENS,%20Daniel&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée