Afficher la notice abrégée

hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorCASTANET, Uli
hal.structure.identifierSolvay Silica
dc.contributor.authorFÉRAL-MARTIN, Cédric
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorDEMOURGUES, Alain
hal.structure.identifierSchool of Physical Science
dc.contributor.authorNEALE, Rachel
hal.structure.identifierSchool of Physical Science
dc.contributor.authorSAYLE, Dean
hal.structure.identifierSchool of Physical Science
dc.contributor.authorCADDEO, Francesco
hal.structure.identifierDepartment of Chemistry
dc.contributor.authorFLITCROFT, Joseph
hal.structure.identifierDepartment of Chemistry
dc.contributor.authorCAYGILL, Robert
hal.structure.identifierDepartment of Chemistry
dc.contributor.authorPOINTON, Ben
hal.structure.identifierDepartment of Chemistry
dc.contributor.authorMOLINARI, Marco
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorMAJIMEL, Jérôme
dc.date.issued2019
dc.identifier.issn1944-8244
dc.description.abstractEnThe ability to control the size and morphology is crucial in optimizing nanoceria catalytic activity as this is governed by the atomistic arrangement of species and structural features at the surfaces. Here, we show that cuboidal cerium oxide nanoparticles can be obtained via microwave-assisted hydrothermal synthesis in highly alkaline media. High-resolution transmission electron microscopy (HRTEM) revealed that the cube edges were truncated by CeO2{110} surfaces and the cube corners were truncated by CeO2{111} surfaces. When adjusting synthesis conditions by increasing NaOH concentration, the average particle size increased. Although this was accompanied by an increase of the cube faces, CeO2{100}, the cube edges, CeO2{110}, and cube corners, CeO2{111}, remained of constant size. Molecular dynamics (MD) was used to rationalize this behavior and revealed that energetically, the corners and edges cannot be atomically sharp, rather they are truncated by {111} and {110} surfaces, respectively, to stabilize the nanocube; both the experiment and simulation showed agreement regarding the minimum size of ∼1.6 nm associated with this truncation. Moreover, HRTEM and MD revealed {111}/{110} faceting of the {110} edges, which balances the surface energy associated with the exposed surfaces, which follows {111} > {110} > {100}, although only the {110} surface facets because of the ease of extracting oxygen from its surface and follows {111} > {100} > {110}. Finally, MD revealed that the {100} surfaces are “liquid-like” with a surface oxygen mobility 5 orders of magnitude higher than that on the {111} surfaces; this arises from the flexibility of the surface species network that can access many different surface arrangements because of very small energy differences. This finding has implications for understanding the surface chemistry of nanoceria and provides avenues to rationalize the design of catalytically active materials at the nanoscale.
dc.language.isoen
dc.publisherWashington, D.C. : American Chemical Society
dc.subject.enceria catalysis
dc.subject.enceria nanocube
dc.subject.enceria nanoparticle
dc.subject.enfaceting
dc.subject.enliquid-like catalysis
dc.subject.enmolecular modelling
dc.title.enControlling the {111}/{110} surface ratio of cuboidal ceria nanoparticles
dc.typeArticle de revue
dc.identifier.doi10.1021/acsami.8b21667
dc.subject.halChimie/Matériaux
bordeaux.journalACS Applied Materials & Interfaces
bordeaux.page11384-11390
bordeaux.volume11
bordeaux.issue12
bordeaux.peerReviewedoui
hal.identifierhal-02090282
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02090282v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS%20Applied%20Materials%20&%20Interfaces&rft.date=2019&rft.volume=11&rft.issue=12&rft.spage=11384-11390&rft.epage=11384-11390&rft.eissn=1944-8244&rft.issn=1944-8244&rft.au=CASTANET,%20Uli&F%C3%89RAL-MARTIN,%20C%C3%A9dric&DEMOURGUES,%20Alain&NEALE,%20Rachel&SAYLE,%20Dean&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée