Afficher la notice abrégée

hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorSILVAIN, Jean-François
hal.structure.identifierDepartment of Electrical and Computer Engineering
dc.contributor.authorCONSTANTIN, Loïc
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorHEINTZ, Jean-Marc
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorBORDÈRE, Sylvie
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorTEULÉ-GAY, Lionel
hal.structure.identifierDepartment of Electrical and Computer Engineering
dc.contributor.authorLU, Yongfeng
hal.structure.identifierComposite Innovation
dc.contributor.authorDIOT, Jean-Luc
hal.structure.identifierComposite Innovation
dc.contributor.authorDE LANGLADE, Renaud
hal.structure.identifierInnoptics
dc.contributor.authorFEUILLET, Emilien
dc.date.issued2021-02-23
dc.identifier.issn2637-6113
dc.description.abstractEnDeveloping solder joints capable of withstanding high power density, high temperature, and significant thermomechanical stress is essential to further develop electronic device performances. This study demonstrates an effective route of producing dense, robust, and reliable high-temperature Cu–Sn soldering by modifying the interfacial exchange during a transient liquid phase bonding (TLP) process. Our approach thus relies on altering internal phenomena (diffusion and transport of reactive species) rather than classical external TLP bonding parameters (e.g., time, temperature, and pressure). By adding a Cu3Sn-coated layer between Cu and Sn before the TLP process, fast dissolution of Cu in liquid Sn is achieved, altering undesired Cu6Sn5 scallop grain impingement and promoting their uniform growth within the liquid. A bonding and pore formation mechanism of the solder with or without the Cu3Sn-coated layer is proposed based on experimental and theoretical analysis. The developed TLP joint possesses a shear stress resistance of more than 80 MPa with a thermal cycle endurance superior to 1200 (−45–180 °C), making it highly reliable compared to a classical solder joint with shear and thermal cycling resistances of 45 and 500 MPa, respectively. The developed approaches thus provide an easy, affordable, and scalable method of producing a high-temperature and durable Cu–Sn joint for high-power module applications.
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.subject.entransient liquid phase bonding
dc.subject.enintermetallic
dc.subject.enCu−Sn
dc.subject.endiffusion
dc.subject.enmechanical characterization
dc.subject.enTransient liquid phase bonding
dc.subject.enIntermetallic
dc.subject.enCu-Sn
dc.subject.enDiffusion
dc.subject.enMechanical characterization
dc.title.enControlling interfacial exchanges in liquid phase bonding enables formation of strong and reliable Cu–Sn soldering for high-power and temperature applications
dc.typeArticle de revue
dc.identifier.doi10.1021/acsaelm.0c01040
dc.subject.halChimie/Matériaux
bordeaux.journalACS Applied Electronic Materials
bordeaux.page921-928
bordeaux.volume3
bordeaux.issue2
bordeaux.peerReviewedoui
hal.identifierhal-03153399
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03153399v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS%20Applied%20Electronic%20Materials&rft.date=2021-02-23&rft.volume=3&rft.issue=2&rft.spage=921-928&rft.epage=921-928&rft.eissn=2637-6113&rft.issn=2637-6113&rft.au=SILVAIN,%20Jean-Fran%C3%A7ois&CONSTANTIN,%20Lo%C3%AFc&HEINTZ,%20Jean-Marc&BORD%C3%88RE,%20Sylvie&TEUL%C3%89-GAY,%20Lionel&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée