Afficher la notice abrégée

hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorGOLGIR, Hossein Rabiee
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorZHOU, Yun Shen
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorLI, Dawei
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorKERAMATNEJAD, Kamran
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorXIONG, Wei
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorWANG, Mengmeng
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorJIANG, Li Jia
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorHUANG, Xi
hal.structure.identifierSchool of Mechanical Engineering
dc.contributor.authorJIANG, Lan
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorSILVAIN, Jean-François
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorLU, Yong Feng
dc.date.issued2016-09
dc.identifier.issn0021-8979
dc.description.abstractEnThe influence of exciting ammonia (NH3) molecular vibration in the growth of gallium nitride (GaN) was investigated by using an infrared laser-assisted metal organic chemical vapor deposition method. A wavelength tunable CO2 laser was used to selectively excite the individual vibrational modes. Resonantly exciting the NH-wagging mode (v 2) of NH3 molecules at 9.219 μm led to a GaN growth rate of 84 μm/h, which is much higher than the reported results. The difference between the resonantly excited and conventional thermally populated vibrational states was studied via resonant and nonresonant vibrational excitations of NH3 molecules. Resonant excitation of various vibrational modes was achieved at 9.219, 10.35, and 10.719 μm, respectively. Nonresonant excitation was conducted at 9.201 and 10.591 μm, similar to conventional thermal heating. Compared to nonresonant excitation, resonant excitation noticeably promotes the GaN growth rate and crystalline quality. The full width at half maximum value of the XRD rocking curves of the GaN (0002) and GaN (10–12) diffraction peaks decreased at resonant depositions and reached its minimum value of 45 and 53 arcmin, respectively, at the laser wavelength of 9.219 μm. According to the optical emission spectroscopic studies, resonantly exciting the NH3 v 2 mode leads to NH3 decomposition at room temperature, reduces the formation of the TMGa:NH3 adduct, promotes the supply of active species in GaN formation, and, therefore, results in the increased GaN growth rate.
dc.language.isoen
dc.publisherAmerican Institute of Physics
dc.title.enResonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition
dc.typeArticle de revue
dc.identifier.doi10.1063/1.4962426
dc.subject.halChimie/Matériaux
bordeaux.journalJournal of Applied Physics
bordeaux.page105303 (8 p.)
bordeaux.volume120
bordeaux.issue10
bordeaux.peerReviewedoui
hal.identifierhal-01367759
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01367759v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Applied%20Physics&rft.date=2016-09&rft.volume=120&rft.issue=10&rft.spage=105303%20(8%20p.)&rft.epage=105303%20(8%20p.)&rft.eissn=0021-8979&rft.issn=0021-8979&rft.au=GOLGIR,%20Hossein%20Rabiee&ZHOU,%20Yun%20Shen&LI,%20Dawei&KERAMATNEJAD,%20Kamran&XIONG,%20Wei&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée