Effect of temperature on structure and electronic properties of nanometric spinel-type cobalt oxides
hal.structure.identifier | Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB] | |
dc.contributor.author | GODILLOT, Gérôme | |
hal.structure.identifier | Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB] | |
dc.contributor.author | GUERLOU-DEMOURGUES, Liliane | |
hal.structure.identifier | Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB] | |
dc.contributor.author | CROGUENNEC, Laurence | |
hal.structure.identifier | Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB] | |
dc.contributor.author | SHAJU, K. M. | |
hal.structure.identifier | Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB] | |
dc.contributor.author | DELMAS, Claude | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1932-7447 | |
dc.description.abstractEn | Temperature is shown to have a huge influence on the electronic properties of nanometric spinel-type cobalt oxides precipitated at low temperature in alkaline media. The initial phase, with formula HxLiyCo3−δO4, contains hydrogen, lithium, cobalt vacancies, and a mixed valence Co4+/Co3+ within the structure, leading to an electronic conductivity higher than that of stoichiometric Co3O4. Its structural evolution under thermal treatment was studied by X-ray diffraction and chemical analysis, which reveal modifications in structure and compositions, involving water release, increase of the Co/O atomic ratio, and modification of the Co4+/Co3+ ratio. The RT to 300 °C range is particularly interesting as a single-phase domain and the materials obtained in this temperature range were investigated by chemical analysis, electronic conductivity and specific surface area measurements. Upon increasing temperature, the enhancement of the Co4+/Co3+ ratio, together with cationic redistribution in the spinel framework, results in an improvement of the electronic conductivity (more than 2 orders of magnitude for materials heated above 150 °C). Finally, the systematic thermal study of electronic conductivity and specific surface area of the materials allows to determine an optimal heat-treatment temperature leading to an optimized active electrode material for electrochemical energy storage applications, especially in supercapacitors. Such a solid state chemistry approach combining many material characterization techniques to reach a complete knowledge of the material is quite rare in the literature concerning oxides for supercapacitors. | |
dc.language.iso | en | |
dc.publisher | American Chemical Society | |
dc.title.en | Effect of temperature on structure and electronic properties of nanometric spinel-type cobalt oxides | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1021/jp3100359 | |
dc.subject.hal | Chimie/Matériaux | |
bordeaux.journal | Journal of Physical Chemistry C | |
bordeaux.page | 9065-9075 | |
bordeaux.volume | 117 | |
bordeaux.issue | 18 | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00828061 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
dc.subject.es | Cobalt Oxides | |
dc.subject.es | Nanoparticles | |
dc.subject.es | Spinel | |
dc.subject.es | Physical properties | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00828061v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Physical%20Chemistry%20C&rft.date=2013&rft.volume=117&rft.issue=18&rft.spage=9065-9075&rft.epage=9065-9075&rft.eissn=1932-7447&rft.issn=1932-7447&rft.au=GODILLOT,%20G%C3%A9r%C3%B4me&GUERLOU-DEMOURGUES,%20Liliane&CROGUENNEC,%20Laurence&SHAJU,%20K.%20M.&DELMAS,%20Claude&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |