Mostrar el registro sencillo del ítem

hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorDAS, Rajat K.
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorZOUANI, Omar F.
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorLABRUGÈRE, Christine
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorODA, Reiko
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorDURRIEU, Marie-Christine
dc.date.issued2013
dc.identifier.issn1936-0851
dc.description.abstractEnMicroenvironments such as protein composition, physical features, geometry, and elasticity play important roles in stem cell lineage specification. The components of the extracellular matrix are known to subsequently assemble into fibrillar networks in vivo with defined periodicity. However, the effect of the most critical parameter, which involves the periodicity of these fibrillar networks, on the stem cell fate is not yet investigated. Here, we show the effect of synthetic fibrillar networks patterned with nanometric periodicities, using bottom-up approaches, on the response of stem cells. We have used helical organic nanoribbons based on self-assemblies of Gemini-type amphiphiles to access chiral silica nanoribbons with two different shapes and periodicities (twisted ribbons and helical ribbons) from the same native self-assembled organic nanostructure. We demonstrate the covalent grafting of these silica nanoribbons onto activated glass substrates and the influence of this programmed isotropically oriented matrix to direct the commitment of human mesenchymal stem cells (hMSCs) into osteoblast lineage in vitro, free of osteogenic-inducing media. The specific periodicity of 63 nm (±5 nm) with helical ribbon shape induces specific cell adhesion through the fibrillar focal adhesion formation and leads to stem cell commitment into osteoblast lineage. In contrast, the matrix of periodicity 100 nm (±15 nm) with twisted ribbon shape does not lead to osteoblast commitment. The inhibition of non-muscle myosin II with blebbistatin is sufficient to block this osteoblast commitment on helical nanoribbon matrix, demonstrating that stem cells interpret the nanohelical shape and periodicity environment physically. These results indicate that hMSCs could interpret nanohelical shape and periodicity in the same way they sense microenvironment elasticity. This provides a promising tool to promote hMSC osteogenic capacity, which can be exploited in a 3D scaffold for bone tissue engineering.
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.title.enInfluence of nanohelical shape and periodicity on stem cell fate.
dc.typeArticle de revue
dc.identifier.doi10.1021/nn4001325
dc.subject.halChimie/Matériaux
bordeaux.journalACS Nano
bordeaux.page3351-3361
bordeaux.volume7
bordeaux.issue4
bordeaux.peerReviewedoui
hal.identifierhal-00828229
hal.version1
hal.popularnon
hal.audienceInternationale
dc.subject.itSurface functionalization
dc.subject.itNanohelical periodicity
dc.subject.itCell differentiation
dc.subject.itStem cell microenvironment
dc.subject.itSilica nanostructures
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00828229v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS%20Nano&rft.date=2013&rft.volume=7&rft.issue=4&rft.spage=3351-3361&rft.epage=3351-3361&rft.eissn=1936-0851&rft.issn=1936-0851&rft.au=DAS,%20Rajat%20K.&ZOUANI,%20Omar%20F.&LABRUG%C3%88RE,%20Christine&ODA,%20Reiko&DURRIEU,%20Marie-Christine&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem