Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorWEN, Xiaohuan
dc.contributor.authorWANG, Yanhong
dc.contributor.authorJI, Xiaodong
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorTRAORE, Mamadou Kaba
IDREF: 112136893
dc.date.accessioned2022-10-11T08:59:00Z
dc.date.available2022-10-11T08:59:00Z
dc.date.issued2022-11-30
dc.identifier.issn0957-4174en_US
dc.identifier.urioai:crossref.org:10.1016/j.eswa.2022.117998
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/148376
dc.description.abstractCustomer retention is always a hot topic in customer relationship management, and machine learning is widely used in this area. However, existing researches focus on increasing the accuracy of predicting customer churn rather than provide a method of making practical strategies to retain customer in business. Such being the case, this paper proposes a three-stage churn management framework, integrating churn prediction, customer segmentation and strategy making effectively. Two open datasets are collected and applied our framework respectively. In customer prediction phase, a Deep and Cross model taking cross features into consideration is built to learn more implicit information. During assessment, 10-fold cross validation is used, and our model outperforms existing mainstream models. In customer segmentation phase, customers are segmented into different groups using the output of our model and the importance scores of cross features are calculated as well. In strategy making phase, possible strategies for business are made based on the results of the previous phases. Then we propose a fast feature deduction approach to verify the efficiency of strategies, which offers instructive information for decision-makers.
dc.language.isoENen_US
dc.sourcecrossref
dc.subjectChurn prediction
dc.subjectCustomer segmentation
dc.subjectFast feature deduction
dc.subjectDeep and Cross Network
dc.subjectAsymmetric loss
dc.title.enThree-stage churn management framework based on DCN with asymmetric loss
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.eswa.2022.117998en_US
dc.subject.halSciences de l'ingénieur [physics]en_US
bordeaux.journalExpert Systems with Applicationsen_US
bordeaux.volume207en_US
bordeaux.hal.laboratoriesLaboratoire d’Intégration du Matériau au Système (IMS) - UMR 5218en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03810170
hal.version1
hal.date.transferred2022-10-11T08:59:02Z
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Expert%20Systems%20with%20Applications&rft.date=2022-11-30&rft.volume=207&rft.eissn=0957-4174&rft.issn=0957-4174&rft.au=WEN,%20Xiaohuan&WANG,%20Yanhong&JI,%20Xiaodong&TRAORE,%20Mamadou%20Kaba&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée