Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorAYOUB, Bassel
dc.contributor.authorMOREAU, Stéphane
dc.contributor.authorLHOSTIS, Sandrine
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorFRÉMONT, Hélène
dc.contributor.authorMERMOZ, Sébastien
dc.contributor.authorSOUCHIER, Emeline
dc.contributor.authorDELOFFRE, Emilie
dc.contributor.authorESCOUBAS, Stéphanie
dc.contributor.authorCORNELIUS, Thomas
dc.contributor.authorTHOMAS, Olivier
dc.date.accessioned2022-07-13T13:39:26Z
dc.date.available2022-07-13T13:39:26Z
dc.date.issued2022-05
dc.identifier.issn0167-9317en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/140488
dc.description.abstractEnHybrid bonding is a very promising 3D packaging technology which allows extremely high interconnect density between electronic chips. In its most advanced interconnect pitch, Cu pads as small as 300 nm may be used. Successful bonding relies directly on the thermomechanical displacement of Cu above the oxide matrix. Hence, the control of this technology relies on a profound understanding of the thermomechanical behavior of 300 nm Cu pads. To achieve this goal, X-ray synchrotron Laue micro-diffraction is used to monitor the strain state and orientation of individual Cu pads in situ during heat treatment. The experimental findings are completed with Finite Element Modeling simulations including elastic anisotropy and plastic behavior. The 300 nm Cu pads are found monocrystalline with random lattice orientations. The thermomechanical behavior of each pad is found highly driven by its crystal orientation in accordance with the elastic and plastic anisotropy of copper. Very good agreement is found with simulations offering profound understanding of the single nanocrystalline Cu grains properties and providing solid conclusions for a successful hybrid bonding at sub-micrometric pitch level.
dc.description.sponsorshipNANOELEC - ANR-10-AIRT-0005en_US
dc.language.isoENen_US
dc.subject.enNano-interconnect
dc.subject.enCu/SiO2 hybrid bonding
dc.subject.enLaue microdiffraction
dc.subject.enMicrostructure
dc.subject.enThermomechanical behavior
dc.subject.enPlasticity
dc.title.enIn-situ characterization of thermomechanical behavior of copper nano-interconnect for 3D integration
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.mee.2022.111809en_US
dc.subject.halSciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectroniqueen_US
bordeaux.journalMicroelectronic Engineeringen_US
bordeaux.page111809en_US
bordeaux.volume261en_US
bordeaux.hal.laboratoriesLaboratoire d’Intégration du Matériau au Système (IMS) - UMR 5218en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcehal
hal.identifierhal-03672631
hal.version1
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Microelectronic%20Engineering&rft.date=2022-05&rft.volume=261&rft.spage=111809&rft.epage=111809&rft.eissn=0167-9317&rft.issn=0167-9317&rft.au=AYOUB,%20Bassel&MOREAU,%20St%C3%A9phane&LHOSTIS,%20Sandrine&FR%C3%89MONT,%20H%C3%A9l%C3%A8ne&MERMOZ,%20S%C3%A9bastien&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée