Afficher la notice abrégée

dc.contributor.authorBOLST, David
dc.contributor.authorCIRRONE, Giuseppe A.P.
dc.contributor.authorCUTTONE, Giacomo
dc.contributor.authorFOLGER, Gunter
hal.structure.identifierCentre d'Etudes Nucléaires de Bordeaux Gradignan [CENBG]
dc.contributor.authorINCERTI, Sebastien
dc.contributor.authorIVANCHENKO, Vladimir
dc.contributor.authorKOI, Tatsumi
hal.structure.identifierCommissariat à l'énergie atomique et aux énergies alternatives [CEA]
dc.contributor.authorMANCUSI, Davide
dc.contributor.authorPANDOLA, Luciano
dc.contributor.authorROMANO, Francesco
dc.contributor.authorROSENFELD, Anatoly B.
dc.contributor.authorGUATELLI, Susanna
dc.date.issued2017
dc.description.abstractEn$^{12}$C ion therapy has had growing interest in recent years for its excellent dose conformity. However at therapeutic energies, which can be as high as 400 MeV/u, carbon ions produce secondary fragments. For an incident 400 MeV/u 12C ion beam, $\sim 70 \%$ of the beam will undergo fragmentation before the Bragg Peak. The dosimetric and radiobiological impact of these fragments must be accurately characterised, as it can result in increasing the risk of secondary cancer for the patient as well as altering the relative biological effectiveness. This work investigates the accuracy of three different nuclear fragmentation models available in the Monte Carlo Toolkit Geant4, the Binary Intranuclear Cascade (BIC), the Quantum Molecular Dynamics (QMD) and the Liege Intranuclear Cascade (INCL++). The models were benchmarked against experimental data for a pristine 400 MeV/u $^{12}$C beam incident upon a water phantom, including fragment yield, angular and energy distribution. For fragment yields the three alternative models agreed between $\sim 5$ and $\sim 35 \%$ with experimental measurements, the QMD using the “Frag” option gave the best agreement for lighter fragments but had reduced agreement for larger fragments. For angular distributions INCL++ was seen to provide the best agreement among the models for all elements with the exception of Hydrogen, while BIC and QMD was seen to produce broader distributions compared to experiment. BIC and QMD performed similar to one another for kinetic energy distributions while INCL++ suffered from producing lower energy distributions compared to the other models and experiment.
dc.language.isoen
dc.subject.enGeant4
dc.subject.enBenchmarking
dc.subject.enHeavy ion therapy
dc.title.enValidation of Geant4 fragmentation for Heavy Ion Therapy
dc.typeArticle de revue
dc.identifier.doi10.1016/j.nima.2017.06.046
dc.subject.halPhysique [physics]/Physique des Hautes Energies - Phénoménologie [hep-ph]
bordeaux.journalNucl.Instrum.Meth.A
bordeaux.page68-75
bordeaux.volume869
bordeaux.peerReviewedoui
hal.identifierhal-01669844
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01669844v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nucl.Instrum.Meth.A&rft.date=2017&rft.volume=869&rft.spage=68-75&rft.epage=68-75&rft.au=BOLST,%20David&CIRRONE,%20Giuseppe%20A.P.&CUTTONE,%20Giacomo&FOLGER,%20Gunter&INCERTI,%20Sebastien&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée