Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.relation.isnodouble92ff04a2-39e8-4536-9c0a-b81da3cae4af*
dc.contributor.authorALLEMAND, Alexandre
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorGUERIN, Clement
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorBESNARD, C.
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorBILLARD, Romain
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorLE PETITCORPS, Yann
dc.date.accessioned2021-12-07T15:19:06Z
dc.date.available2021-12-07T15:19:06Z
dc.date.issued2021
dc.identifier.issn9552219en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/124051
dc.description.abstractEnTwo processes to sinter monolithic hexagonal Barium AluminoSilicate (BAS) are compared in this study: Spark Plasma Sintering (SPS) and a new Ultra-Fast Pressureless Sintering (UFPS) technology developed by Galtenco Solutions®. For both, hexagonal BAS was sintered in its thermal stability range (between 1590 °C and 1760 °C). Results demonstrate that it is only possible to manufacture small parts (15 mm diameter/ 5 mm height) of hexagonal BAS with the SPS process. For larger or more complex shapes, a thermal gradient appears in the sample, leading to the partial melting of some of its body. On the other hand, the new UFPS technology enables the successful processing of large parts of hexagonal BAS with similar efficiency to SPS for small parts. This technology offers a better thermal control of the sintering and eliminates the thermal gradient issue that can be found in the SPS technique.
dc.language.isoENen_US
dc.subject.enBarium AluminoSilicate
dc.subject.enComposite material
dc.subject.enPressureless sintering
dc.subject.enSpark plasma sintering
dc.subject.enUltra-fast sintering
dc.title.enA comparison between a new Ultra Fast Pressureless Sintering (UFPS) technology and Spark Plasma Sintering (SPS) for Barium AluminoSilicate metastable phase
dc.title.alternativeJournal of the European Ceramic Societyen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.jeurceramsoc.2020.09.054en_US
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]en_US
bordeaux.journalJournal of the European Ceramic Societyen_US
bordeaux.page1524-1529en_US
bordeaux.volume41en_US
bordeaux.hal.laboratoriesLaboratoire des Composites Thermo Structuraux (LCTS) - UMR 5801en_US
bordeaux.issue2en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionCEAen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-03469374
hal.version1
hal.date.transferred2021-12-07T15:19:08Z
hal.exporttrue
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20the%20European%20Ceramic%20Society&rft.date=2021&rft.volume=41&rft.issue=2&rft.spage=1524-1529&rft.epage=1524-1529&rft.eissn=9552219&rft.issn=9552219&rft.au=ALLEMAND,%20Alexandre&GUERIN,%20Clement&BESNARD,%20C.&BILLARD,%20Romain&LE%20PETITCORPS,%20Yann&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée