Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorROGER, Jerome
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorCHOLLON, Georges
dc.date.accessioned2021-12-07T15:07:50Z
dc.date.available2021-12-07T15:07:50Z
dc.date.issued2019-05-01
dc.identifier.issn0272-8842en_US
dc.identifier.urioai:crossref.org:10.1016/j.ceramint.2019.01.191
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/124033
dc.description.abstractEnLiquid silicon Infiltration (LSI) is a fast and economical process to manufacture SiC-based ceramics. For a better understanding of reactive melt infiltration of liquid silicon, the wetting and infiltration of porous graphite by molten silicon were investigated at 1450, 1500 and 1550 °C for duration comprised between 10 s and 1 h. Infiltrations tests were performed in an argon atmosphere with an inductively heated furnace operating with heating and cooling rates of 300 °C.min−1. The formation and growth of SiC grains were investigated at the outer surface and within graphitic carbon substrates with 11% porosity and a narrow pore size distribution centered at 2 μm. The length of the infiltrated zone and the SiC crystals growth were determined from scanning electron microscopy. Rapid spreading and infiltration of molten silicon are observed from the first 60 s. The growth rate of the interfacial SiC layer obeys a fourth-power law with an activation energy of 260 ± 30 kJ mol−1. Pore filling by SiC is limited by volume diffusion with an activation energy equal to 320 ± 40 kJ mol−1.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.sourcecrossref
dc.subject.enGrain growth
dc.subject.enComposites
dc.subject.enElectron microscopy
dc.subject.enCarbon
dc.subject.enSiC
dc.subject.enRefractories
dc.title.enMechanisms and kinetics during reactive infiltration of molten silicon in porous graphite
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.ceramint.2019.01.191en_US
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]en_US
bordeaux.journalCeramics Internationalen_US
bordeaux.page8690-8699en_US
bordeaux.volume45en_US
bordeaux.hal.laboratoriesLaboratoire des Composites Thermo Structuraux (LCTS) - UMR 5801en_US
bordeaux.issue7en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionCEAen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-02070189
hal.version1
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Ceramics%20International&rft.date=2019-05-01&rft.volume=45&rft.issue=7&rft.spage=8690-8699&rft.epage=8690-8699&rft.eissn=0272-8842&rft.issn=0272-8842&rft.au=ROGER,%20Jerome&CHOLLON,%20Georges&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée