EpidemiOptim: A Toolbox for the Optimization of Control Policies in Epidemiological Models
dc.rights.license | open | en_US |
dc.contributor.author | COLAS, C. | |
hal.structure.identifier | Statistics In System biology and Translational Medicine [SISTM] | |
hal.structure.identifier | Bordeaux population health [BPH] | |
dc.contributor.author | HEJBLUM, Boris
ORCID: 0000-0003-0646-452X IDREF: 189970316 | |
hal.structure.identifier | Groupe de Recherche en Economie Théorique et Appliquée [GREThA] | |
dc.contributor.author | ROUILLON, Sebastien
IDREF: 149491913 | |
hal.structure.identifier | Bordeaux population health [BPH] | |
dc.contributor.author | THIEBAUT, Rodolphe | |
dc.contributor.author | OUDEYER, P.-Y. | |
dc.contributor.author | MOULIN-FRIER, C. | |
hal.structure.identifier | Statistics In System biology and Translational Medicine [SISTM] | |
hal.structure.identifier | Bordeaux population health [BPH] | |
dc.contributor.author | PRAGUE, Melanie | |
dc.date.accessioned | 2021-11-18T16:30:43Z | |
dc.date.available | 2021-11-18T16:30:43Z | |
dc.date.issued | 2021-07 | |
dc.identifier.issn | 1076-9757 | en_US |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/123869 | |
dc.description.abstractEn | Modeling the dynamics of epidemics helps to propose control strategies based on pharmaceutical and non-pharmaceutical interventions (contact limitation, lockdown, vaccination, etc). Hand-designing such strategies is not trivial because of the number of possible interventions and the difficulty to predict long-term effects. This task can be cast as an optimization problem where state-of-the-art machine learning methods such as deep reinforcement learning might bring significant value. However, the specificity of each domain—epidemic modeling or solving optimization problems—requires strong collaborations between researchers from different fields of expertise. This is why we introduce EpidemiOptim, a Python toolbox that facilitates collaborations between researchers in epidemiology and optimization. EpidemiOptim turns epidemiological models and cost functions into optimization problems via a standard interface commonly used by optimization practitioners (OpenAI Gym). Reinforcement learning algorithms based on Q-Learning with deep neural networks (dqn) and evolutionary algorithms (nsga-ii) are already implemented. We illustrate the use of EpidemiOptim to find optimal policies for dynamical on-off lockdown control under the optimization of the death toll and economic recess using a Susceptible-Exposed-Infectious-Removed (seir) model for COVID-19. Using EpidemiOptim and its interactive visualization platform in Jupyter notebooks, epidemiologists, optimization practitioners and others (e.g. economists) can easily compare epidemiological models, costs functions and optimization algorithms to address important choices to be made by health decision-makers. Trained models can be explored by experts and non-experts via a web interface. ©2021 AI Access Foundation. All rights reserved. | |
dc.language.iso | EN | en_US |
dc.subject.en | Control Strategies | |
dc.subject.en | Cost Functions | |
dc.subject.en | Decision Making | |
dc.subject.en | Deep Learning | |
dc.subject.en | Deep Neural Networks | |
dc.subject.en | Epidemiological Models | |
dc.subject.en | Epidemiology | |
dc.subject.en | Evolutionary Algorithms | |
dc.subject.en | Interactive Visualizations | |
dc.subject.en | Learning Algorithms | |
dc.subject.en | Learning Systems | |
dc.subject.en | Non-Pharmaceutical Interventions | |
dc.subject.en | Optimization | |
dc.subject.en | Optimization Algorithms | |
dc.subject.en | Optimization Problems | |
dc.subject.en | Reinforcement Learning | |
dc.subject.en | Standard Interface | |
dc.subject.en | State-Of-The-Art Machine Learning Methods | |
dc.subject.en | Visualization | |
dc.title.en | EpidemiOptim: A Toolbox for the Optimization of Control Policies in Epidemiological Models | |
dc.type | Article de revue | en_US |
dc.identifier.doi | 10.1613/JAIR.1.12588 | en_US |
dc.subject.hal | Économie et finance quantitative [q-fin] | en_US |
bordeaux.journal | Journal of Artificial Intelligence Research | en_US |
bordeaux.page | 479-515 | en_US |
bordeaux.volume | 71 | en_US |
bordeaux.hal.laboratories | Groupe de Recherche en Economie Théorique et Appliquée (GREThA) - UMR 5113 | en_US |
bordeaux.institution | Université de Bordeaux | en_US |
bordeaux.institution | CNRS | en_US |
bordeaux.institution | INSERM | |
bordeaux.peerReviewed | oui | en_US |
bordeaux.inpress | non | en_US |
hal.identifier | hal-03435494 | |
hal.version | 1 | |
hal.date.transferred | 2021-11-18T16:30:47Z | |
hal.export | true | |
dc.rights.cc | Pas de Licence CC | en_US |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Artificial%20Intelligence%20Research&rft.date=2021-07&rft.volume=71&rft.spage=479-515&rft.epage=479-515&rft.eissn=1076-9757&rft.issn=1076-9757&rft.au=COLAS,%20C.&HEJBLUM,%20Boris&ROUILLON,%20Sebastien&THIEBAUT,%20Rodolphe&OUDEYER,%20P.-Y.&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |