Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorVOREL, Jan
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorGRIPPON, Edith
dc.contributor.authorSEJNOHA, Michal
dc.date.accessioned2021-09-03T14:22:37Z
dc.date.available2021-09-03T14:22:37Z
dc.date.issued2015
dc.identifier.issn1940-4352en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/112077
dc.description.abstractEnThe article is concerned with the prediction of effective thermoelastic properties of balanced plain weave textile fabrics bonded to a polysiloxane matrix. While actual applications assume ceramic matrices, we limit our attention to their polymeric precursors and concentrate on computational aspects of both analytical and numerical homogenization. Two types of reinforcements, basalt and carbon, are considered to study the influence of microstructural details on the estimates of overall properties. Attention is focused on the previously developed numerical approach effectively combining the Mori-Tanaka micromechanical model, two-layer statistically equivalent periodic unit cell analyzed with the help of the extended finite element method (XFEM), and information about microstructure configuration provided by standard image processing as well as X-ray microtomography. The main goal is to validate this approach by comparing the numerically obtained data with those obtained experimentally by exploiting the nondestructive measurements of ultrasonic wave speed. Moreover, a pure numerical study is performed to estimate the sensitivity to geometrical parameters. For this reason, not only effective elastic properties but also effective thermal expansion coefficients are evaluated. Numerical tests performed on simplified μCT (computational microtomography) samples, again with the help of XFEM, serve as an additional source of information for the validation of the proposed homogenization strategy.
dc.language.isoENen_US
dc.subject.enbalanced woven composites
dc.subject.enstatistically equivalent periodic unit cell
dc.subject.enimage processing
dc.subject.enX-ray microtomography
dc.subject.ensoft computing
dc.subject.enhomogenization
dc.subject.enextended finite element method
dc.subject.enMori-Tanaka method
dc.title.enEffective thermoelastic properties of polysiloxane matrix-based plain weave textile composites
dc.typeArticle de revueen_US
dc.identifier.doi10.1615/IntJMultCompEng.2014011020en_US
dc.subject.halChimie/Matériauxen_US
bordeaux.journalInternational Journal for Multiscale Computational Engineeringen_US
bordeaux.volume13en_US
bordeaux.hal.laboratoriesLaboratoire des Composites Thermo Structuraux (LCTS) - UMR 5801en_US
bordeaux.issue3en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionCEAen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-03967188
hal.version1
hal.date.transferred2023-02-01T10:01:49Z
hal.exporttrue
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20Journal%20for%20Multiscale%20Computational%20Engineering&rft.date=2015&rft.volume=13&rft.issue=3&rft.eissn=1940-4352&rft.issn=1940-4352&rft.au=VOREL,%20Jan&GRIPPON,%20Edith&SEJNOHA,%20Michal&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée