Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.relation.isnodouble1516e48f-759d-484b-a45e-3a306b719a64*
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorROGER, Jerome
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorAVENEL, M.
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorLAPUYADE, Laurine
dc.date.accessioned2021-07-21T07:22:08Z
dc.date.available2021-07-21T07:22:08Z
dc.date.issued2020-05-01
dc.identifier.issn0955-2219en_US
dc.identifier.urioai:crossref.org:10.1016/j.jeurceramsoc.2019.12.050
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/110132
dc.description.abstractEnIn Part A of this study, infiltrations experiments of porous SiC samples by hexadecane with pore-size distributions comprising small and large pores were realized. Two successive stages were identified during the filling of these samples corresponding to the infiltration of the two types of pores. The experimental data were successfully treated with a new analytical function. In Part B, it was found that this function can also be applied to the analysis of the mass gain during molten silicon infiltration at 1500 °C. Prior to silicon infiltration, it was found that the operating temperature induces a shift of the pore size distributions towards larger values. A dissolution-recrystallisation mechanism can also occur during the infiltration of silicon. During the first stage, liquid silicon fills rapidly larger pores than hexadecane. The kinetics are significantly larger with liquid silicon. Consequently, the durations for the complete filling are very short with molten silicon.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.sourcecrossref
dc.subject.enSiC
dc.subject.enMolten silicon
dc.subject.enMicrostructure evolution
dc.subject.enInfiltration kinetic
dc.subject.enWashburn equation
dc.title.enCharacterization of SiC ceramics with complex porosity by capillary infiltration: Part B – Filling by molten silicon at 1500 °C
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.jeurceramsoc.2019.12.050en_US
dc.subject.halChimie/Matériauxen_US
bordeaux.journalJournal of the European Ceramic Societyen_US
bordeaux.page1869-1876en_US
bordeaux.volume40en_US
bordeaux.hal.laboratoriesLaboratoire des Composites Thermo Structuraux (LCTS) - UMR 5801en_US
bordeaux.issue5en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionCEAen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-02470674
hal.exportfalse
workflow.import.sourcedissemin
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20the%20European%20Ceramic%20Society&rft.date=2020-05-01&rft.volume=40&rft.issue=5&rft.spage=1869-1876&rft.epage=1869-1876&rft.eissn=0955-2219&rft.issn=0955-2219&rft.au=ROGER,%20Jerome&AVENEL,%20M.&LAPUYADE,%20Laurine&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée