Photochemical kinetics uncertainties in modeling Titan's atmosphere: First consequences
DOBRIJEVIC, M.
Observatoire aquitain des sciences de l'univers [OASU]
Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux [L3AB]
See more >
Observatoire aquitain des sciences de l'univers [OASU]
Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux [L3AB]
DOBRIJEVIC, M.
Observatoire aquitain des sciences de l'univers [OASU]
Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux [L3AB]
< Reduce
Observatoire aquitain des sciences de l'univers [OASU]
Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux [L3AB]
Language
en
Article de revue
This item was published in
Planetary and Space Science. 2007, vol. 55, p. 1470-1489
Elsevier
English Abstract
Uncertainties carried by the different kinetic parameters included in photochemical models of planetary atmospheres have rarely been considered even if they are supposed to be contributing mostly to the inconsistencies ...Read more >
Uncertainties carried by the different kinetic parameters included in photochemical models of planetary atmospheres have rarely been considered even if they are supposed to be contributing mostly to the inconsistencies between observations and computed predictions. In this paper, we report the first detailed analysis of the propagation of uncertainties carried by the reaction rate coefficients included in an up-to-date photochemical model of Titan's atmosphere. Monte Carlo calculations performed on these reaction rate coefficients have been used to introduce their uncertainties and to investigate their significance on the photochemical modeling of Titan's atmosphere. Crude approximations in the implemented physical processes have been adopted to limit the number of free parameters. This allows us to pinpoint specifically the importance of chemical processes uncertainties in Titan's photochemical models and to evaluate their chemical robustness. First implications of this preliminary study related to purely chemical rate coefficient uncertainties are discussed. They are important enough to question indeed any comparisons between theoretical models with observations as well as any potential conclusions subsequently inferred. Since the latest missions, such as Cassini–Huygens, are likely to induce an ever-increasing interest for such kind of comparing studies, our conclusions show that it is crucial to reform the way we think of, and use, current photochemical models to understand the processes occurring in the atmospheres of the outer Solar System.Read less <
English Keywords
Chemical uncertainties
Titan
Photochemical models
Monte Carlo
Origin
Hal imported