Combining Strong and Weak Gravitational Lensing in Abell 1689
RICHARD, Johan
Laboratoire Astrophysique de Toulouse-Tarbes [LATT]
California Institute of Technology [CALTECH]
Voir plus >
Laboratoire Astrophysique de Toulouse-Tarbes [LATT]
California Institute of Technology [CALTECH]
RICHARD, Johan
Laboratoire Astrophysique de Toulouse-Tarbes [LATT]
California Institute of Technology [CALTECH]
Laboratoire Astrophysique de Toulouse-Tarbes [LATT]
California Institute of Technology [CALTECH]
SOUCAIL, Geneviève
Laboratoire Astrophysique de Toulouse-Tarbes [LATT]
Services communs OMP [UMS 831]
Laboratoire Astrophysique de Toulouse-Tarbes [LATT]
Services communs OMP [UMS 831]
BARDEAU, Sebastien
Laboratoire Astrophysique de Toulouse-Tarbes [LATT]
Observatoire aquitain des sciences de l'univers [OASU]
Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux [L3AB]
< Réduire
Laboratoire Astrophysique de Toulouse-Tarbes [LATT]
Observatoire aquitain des sciences de l'univers [OASU]
Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux [L3AB]
Langue
en
Article de revue
Ce document a été publié dans
The Astrophysical Journal. 2007-10, vol. 668, p. 643-666
American Astronomical Society
Résumé en anglais
We present a reconstruction of the mass distribution of galaxy cluster Abell 1689 at z=0.18 using detected strong lensing features from deep ACS observations and extensive ground based spectroscopy. Earlier analyses have ...Lire la suite >
We present a reconstruction of the mass distribution of galaxy cluster Abell 1689 at z=0.18 using detected strong lensing features from deep ACS observations and extensive ground based spectroscopy. Earlier analyses have reported up to 32 multiply imaged systems in this cluster, of which only 3 were spectroscopically confirmed. In this work, we present a parametric strong lensing mass reconstruction using 34 multiply imaged systems of which 24 have newly determined spectroscopic redshifts, which is a major step forward in building a robust mass model. In turn, the new spectroscopic data allows a more secure identification of multiply imaged systems. The resultant mass model enables us to reliably predict the redshifts of additional multiply imaged systems for which no spectra are currently available, and to use the location of these systems to further constrain the mass model. Using our strong lensing mass model, we predict on larger scale a shear signal which is consistent with that inferred from our large scale weak lensing analysis derived using CFH12K wide field images. Thanks to a new method for reliably selecting a well defined background lensed galaxy population, we resolve the discrepancy found between the NFW concentration parameters derived from earlier strong and weak lensing analysis. The derived parameters for the best fit NFW profile is found to be c200=7.6+/-1.6 and r200=2.16+/-0.10 h-170 Mpc (corresponding to a 3D mass equal to M200=[1.32+/-0.2]×1015 h70 Msolar). The large number of new constraints incorporated in this work makes Abell 1689 the most reliably reconstructed cluster to date. This well calibrated mass model, which we here make publicly available, will enable us to exploit Abell 1689 efficiently as a gravitational telescope, as well as to potentially constrain cosmology. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Also based on observations from the NASA/ESA Hubble Space Telescope (programs 9289 and 10150) obtained at the Space Telescope Science Institute, which is operated by AURA under NASA contract NAS5-26555.< Réduire
Mots clés en anglais
Cosmology: Observations
Galaxies: Clusters: Individual: Alphanumeric: A1689
Cosmology: Gravitational Lensing
Origine
Importé de halUnités de recherche