Afficher la notice abrégée

dc.contributor.authorDRESSING, Courtney D.
dc.contributor.authorSPIEGEL, David S.
dc.contributor.authorSCHARF, Caleb A.
dc.contributor.authorMENOU, Kristen
hal.structure.identifierObservatoire aquitain des sciences de l'univers [OASU]
hal.structure.identifierLaboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux [L3AB]
hal.structure.identifierLaboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
dc.contributor.authorRAYMOND, Sean N.
dc.date.created2010
dc.date.issued2010
dc.identifier.issn0004-637X
dc.description.abstractEnRadiative equilibrium studies that place Earth-like exoplanets on different circular orbits from the parent star do not fully sample the range of plausible habitability conditions in planetary systems. In the outer regions of the habitable zone, the risk of transitioning into a globally frozen "snowball" state poses a threat to the habitability. Here, we use a one-dimensional energy balance climate model (EBM) to examine how obliquity, spin rate, orbital eccentricity, and the fraction of the surface covered by ocean might influence the onset of such a snowball state. Since, for constant semimajor axis, the annual mean stellar irradiation scales with (1-e^2)^(-1/2), one might expect the greatest habitable semimajor axis to scale as (1-e^2)^(-1/4). We find that this standard simple ansatz provides a reasonable lower bound on the outer boundary of the habitable zone, but the influence of both obliquity and ocean fraction can be profound in the context of planets on eccentric orbits. For planets with eccentricity 0.5, our EBM suggests that the greatest habitable semimajor axis can vary by more than 0.8 AU (78%!) depending on obliquity, with higher obliquity worlds generally more stable against snowball transitions. One might also expect that the long winter at an eccentric planet's apoastron would render it more susceptible to global freezing. Our models suggest that this is not a significant risk for Earth-like planets around Sun-like stars, as considered here, since such planets are buffered by the thermal inertia provided by oceans covering at least 10% of their surface. Nevertheless, the extreme temperature variations achieved on highly eccentric exo-Earths raise questions about the adaptability of life to marginally or transiently habitable conditions.
dc.language.isoen
dc.publisherAmerican Astronomical Society
dc.subject.enAstrophysics
dc.subject.enEarth and Planetary Astrophysics
dc.title.enHabitable Climates: The Influence of Eccentricity
dc.typeArticle de revue
dc.identifier.doi10.1088/0004-637X/721/2/1295
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.identifier.arxiv1002.4875
bordeaux.journalThe Astrophysical Journal
bordeaux.page1295-1307
bordeaux.volume721
bordeaux.issue2
bordeaux.peerReviewedoui
hal.identifierhal-00460507
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00460507v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The%20Astrophysical%20Journal&rft.date=2010&rft.volume=721&rft.issue=2&rft.spage=1295-1307&rft.epage=1295-1307&rft.eissn=0004-637X&rft.issn=0004-637X&rft.au=DRESSING,%20Courtney%20D.&SPIEGEL,%20David%20S.&SCHARF,%20Caleb%20A.&MENOU,%20Kristen&RAYMOND,%20Sean%20N.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée