CH+(1-0) and 13CH+(1-0) absorption lines in the direction of massive star-forming regions
GERIN, M.
Laboratoire de Radioastronomie [LRA]
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique [LERMA]
Laboratoire de Radioastronomie [LRA]
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique [LERMA]
CAIS, Ph.
Université Sciences et Technologies - Bordeaux 1 [UB]
Observatoire aquitain des sciences de l'univers [OASU]
Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux [L3AB]
< Reduce
Université Sciences et Technologies - Bordeaux 1 [UB]
Observatoire aquitain des sciences de l'univers [OASU]
Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux [L3AB]
Language
en
Article de revue
This item was published in
Astronomy and Astrophysics - A&A. 2010-10, vol. 521, p. L15
EDP Sciences
English Abstract
We report the detection of the ground-state rotational transition of the methylidyne cation CH+ and its isotopologue 13CH+ toward the remote massive star-forming regions W33A, W49N, and W51 with the HIFI instrument onboard ...Read more >
We report the detection of the ground-state rotational transition of the methylidyne cation CH+ and its isotopologue 13CH+ toward the remote massive star-forming regions W33A, W49N, and W51 with the HIFI instrument onboard the Herschel satellite. Both lines are seen only in absorption against the dust continuum emission of the star-forming regions. The CH+ absorption is saturated over almost the entire velocity ranges sampled by the lines-of-sight that include gas associated with the star-forming regions (SFR) and Galactic foreground material. The CH+ column densities are inferred from the optically thin components. A lower limit of the isotopic ratio [ 12CH+] /[ 13CH+] > 35.5 is derived from the absorptions of foreground material toward W49N. The column density ratio, N(CH+)/N(HCO+), is found to vary by at least a factor 10, between 4 and >40, in the Galactic foreground material. Line-of-sight 12CH+ average abundances relative to total hydrogen are estimated. Their average value, N(CH+)/NH > 2.6×10-8, is higher than that observed in the solar neighborhood and confirms the high abundances of CH+ in the Galactic interstellar medium. We compare this result to the predictions of turbulent dissipation regions (TDR) models and find that these high abundances can be reproduced for the inner Galaxy conditions. It is remarkable that the range of predicted N(CH+)/N(HCO+) ratios, from 1 to ~50, is comparable to that observed. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix (page 6) is only available in electronic form at http://www.aanda.orgRead less <
English Keywords
turbulence
ISM: kinematics and dynamics
astrochemistry
ISM: molecules
Origin
Hal imported