The Low Mass of Mars: First Evidence of Early Gas-Driven Migration by Jupiter
MORBIDELLI, A.
Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides [CASSIOPEE]
Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides [CASSIOPEE]
RAYMOND, Sean N.
Observatoire aquitain des sciences de l'univers [OASU]
Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
Université Sciences et Technologies - Bordeaux 1 [UB]
Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux [L3AB]
See more >
Observatoire aquitain des sciences de l'univers [OASU]
Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
Université Sciences et Technologies - Bordeaux 1 [UB]
Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux [L3AB]
MORBIDELLI, A.
Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides [CASSIOPEE]
Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides [CASSIOPEE]
RAYMOND, Sean N.
Observatoire aquitain des sciences de l'univers [OASU]
Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
Université Sciences et Technologies - Bordeaux 1 [UB]
Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux [L3AB]
< Reduce
Observatoire aquitain des sciences de l'univers [OASU]
Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
Université Sciences et Technologies - Bordeaux 1 [UB]
Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux [L3AB]
Language
en
Communication dans un congrès
This item was published in
American Geophysical Union, Fall Meeting 2010, abstract #V53A-2233, 2010.
English Abstract
Numerical simulations of planetary accretion have succeeded in matching most of the physical and orbital properties of the terrestrial planets with one glaring exception: they categorically form Mars analogs that are roughly ...Read more >
Numerical simulations of planetary accretion have succeeded in matching most of the physical and orbital properties of the terrestrial planets with one glaring exception: they categorically form Mars analogs that are roughly an order of magnitude too massive (Raymond et al. 2009). The initial conditions that best reproduce the mass of Mars require that the inner planetesimal disk had an outer edge at 1 Astronomical Unit (AU) (Hansen 2009). To date, no mechanism has been shown to create this edge and remain compatible with the current-day solar system, in particular the existence of the asteroid belt. Here we show that a substantial gas-driven radial migration of the giant planets is the needed mechanism. Hydrodynamical simulations show that the evolution of Jupiter and Saturn in a gas-disk generically leads to a two-stage, inward-then-outward, migration where the extent of each stage of migration depends on a priori unconstrained disk parameters (Masset & Snellgrove 2001, Morbidelli et al. 2007, Pierens & Nelson 2008). We demonstrate with numerical simulations that, if Jupiter migrated inwards to 1.5 AU before migrating out towards its current location, its gravitational influence would truncate the inner planetesimal disk at 1 AU. The resulting disk naturally reproduces all the terrestrial planets including Mars. During the giant planets' migration, the asteroid belt is emptied and later re-populated from two distinct parent populations. This provides the first dynamical explanation for the current dichotomy of physical properties of the main asteroid belt, with anhydrous asteroids (S-type) in the inner part and primitive asteroids (C-type) in the outer part (Gradie & Tedesco 1982). Our model links the origin of the inner solar system -- explaining the mass of Mars and the properties of the asteroid belt -- to a realistic evolution of the giant planets. Thus Mars and the asteroid belt provide the first evidence for an early solar system evolution characterized by substantial gas-driven orbital migration of the giant planets, similar to what is inferred for extrasolar planet systems (Armitage 2007).Read less <
English Keywords
[5205] PLANETARY SCIENCES: ASTROBIOLOGY
Formation of stars and planets
[5225] PLANETARY SCIENCES: ASTROBIOLOGY
Early environment of Earth
[5455] PLANETARY SCIENCES: SOLID SURFACE PLANETS
Origin and evolution
Origin
Hal imported