Afficher la notice abrégée

hal.structure.identifierFORMATION STELLAIRE 2013
dc.contributor.authorPIERENS, A.
hal.structure.identifierSSE 2013
dc.contributor.authorCOSSOU, C.
hal.structure.identifierSSE 2013
dc.contributor.authorRAYMOND, Sean N.
dc.date.created2013-08-12
dc.date.issued2013
dc.identifier.issn0004-6361
dc.description.abstractEnEarth-mass bodies are expected to undergo Type I migration directed either inward or outward depending on the thermodynamical state of the protoplanetary disc. Zones of convergent migration exist where the Type I torque cancels out. We study the evolution of multiple protoplanets of a few Earth masses embedded in a non-isothermal protoplanetary disc. The protoplanets are located in the vicinity of a convergence zone located at the transition between two different opacity regimes. Inside the convergence zone, Type I migration is directed outward and outside the zone migration is directed inward. We used a grid-based hydrodynamical code that includes radiative effects. We performed simulations varying the initial number of embryos and tested the effect of including stochastic forces to mimic the effects resulting from turbulence. We also performed N-body runs calibrated on hydrodynamical calculations to follow the evolution on Myr timescales. For a small number of initial embryos (N = 5-7) and in the absence of stochastic forcing, the population of protoplanets migrates convergently toward the zero-torque radius and forms a stable resonant chain that protects embryos from close encounters. In systems with a larger initial number of embryos, or in which stochastic forces were included, these resonant configurations are disrupted. This in turn leads to the growth of larger cores via a phase of giant impacts, after which the system settles to a new stable resonant configuration. Giant planets cores with masses of 10 Earth masses formed in about half of the simulations with initial protoplanet masses of m_p = 3 Earth masses but in only 15% of simulations with m_p = 1 Earth mass. This suggests that if ~2-3 Earth mass protoplanets can form in less than ~1 Myr, convergent migration and giant collisions can grow giant planet cores at Type I migration convergence zones.
dc.language.isoen
dc.publisherEDP Sciences
dc.subject.enAstrophysics
dc.subject.enEarth and Planetary Astrophysics
dc.title.enMaking giant planet cores: convergent migration and growth of planetary embryos in non-isothermal discs
dc.typeArticle de revue
dc.identifier.doi10.1051/0004-6361/201322123
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.identifier.arxiv1308.2596
bordeaux.journalAstronomy and Astrophysics - A&A
bordeaux.pageid.A105
bordeaux.volume558
bordeaux.peerReviewedoui
hal.identifierhal-00858293
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00858293v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Astronomy%20and%20Astrophysics%20-%20A&A&rft.date=2013&rft.volume=558&rft.spage=id.A105&rft.epage=id.A105&rft.eissn=0004-6361&rft.issn=0004-6361&rft.au=PIERENS,%20A.&COSSOU,%20C.&RAYMOND,%20Sean%20N.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée