Afficher la notice abrégée

dc.contributor.authorPALAU, Aina
dc.contributor.authorESTALELLA, R.
dc.contributor.authorGIRART, J. M.
hal.structure.identifierInstitut de Planétologie et d'Astrophysique de Grenoble [IPAG ]
dc.contributor.authorFUENTE, A.
dc.contributor.authorFONTANI, F.
hal.structure.identifierLaboratoire d'Etude du Rayonnement et de la Matière en Astrophysique [LERMA]
dc.contributor.authorCOMMERCON, B.
dc.contributor.authorBUSQUET, G.
hal.structure.identifierFORMATION STELLAIRE 2014
dc.contributor.authorBONTEMPS, Sylvain
dc.contributor.authorSANCHEZ-MONGE, A.
dc.contributor.authorZAPATA, L. A.
dc.contributor.authorZHANG, Q.
hal.structure.identifierLaboratoire d'Etude du Rayonnement et de la Matière en Astrophysique [LERMA]
dc.contributor.authorHENNEBELLE, P.
hal.structure.identifierHerzberg Institute of Astrophysics
dc.contributor.authorDI FRANCESCO, J.
dc.date.created2014-01-31
dc.date.issued2014
dc.identifier.issn0004-637X
dc.description.abstractEnIn order to shed light on the main physical processes controlling fragmentation of massive dense cores, we present a uniform study of the density structure of 19 massive dense cores, selected to be at similar evolutionary stages, for which their relative fragmentation level was assessed in a previous work. We inferred the density structure of the 19 cores through a simultaneous fit of the radial intensity profiles at 450 and 850 micron (or 1.2 mm in two cases) and the Spectral Energy Distribution, assuming spherical symmetry and that the density and temperature of the cores decrease with radius following power-laws. We find a weak (inverse) trend of fragmentation level and density power-law index, with steeper density profiles tending to show lower fragmentation, and vice versa. In addition, we find a trend of fragmentation increasing with density within a given radius, which arises from a combination of flat density profile and high central density and is consistent with Jeans fragmentation. We considered the effects of rotational-to-gravitational energy ratio, non-thermal velocity dispersion, and turbulence mode on the density structure of the cores, and found that compressive turbulence seems to yield higher central densities. Finally, a possible explanation for the origin of cores with concentrated density profiles, which are the cores showing no fragmentation, could be related with a strong magnetic field, consistent with the outcome of radiation magnetohydrodynamic simulations.
dc.language.isoen
dc.publisherAmerican Astronomical Society
dc.subject.enGalaxy Astrophysics
dc.subject.enAstrophysics
dc.title.enFragmentation of massive dense cores down to ~1000 AU: Relation between fragmentation and density structure
dc.typeArticle de revue
dc.identifier.doi10.1088/0004-637X/785/1/42
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Astrophysique stellaire et solaire [astro-ph.SR]
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]/Astrophysique stellaire et solaire [astro-ph.SR]
dc.identifier.arxiv1401.8292
bordeaux.journalThe Astrophysical Journal
bordeaux.pageid. 42
bordeaux.volume785
bordeaux.issue1
bordeaux.peerReviewedoui
hal.identifierhal-00951180
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00951180v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The%20Astrophysical%20Journal&rft.date=2014&rft.volume=785&rft.issue=1&rft.spage=id.%2042&rft.epage=id.%2042&rft.eissn=0004-637X&rft.issn=0004-637X&rft.au=PALAU,%20Aina&ESTALELLA,%20R.&GIRART,%20J.%20M.&FUENTE,%20A.&FONTANI,%20F.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée