Afficher la notice abrégée

hal.structure.identifierLaboratoire de Météorologie Dynamique (UMR 8539) [LMD]
dc.contributor.authorTURBET, Martin
hal.structure.identifierLaboratoire de Météorologie Dynamique (UMR 8539) [LMD]
dc.contributor.authorFORGET, Francois
hal.structure.identifierECLIPSE 2017
dc.contributor.authorLECONTE, J.
hal.structure.identifierLaboratoire d'études spatiales et d'instrumentation en astrophysique [LESIA (UMR_8109)]
dc.contributor.authorCHARNAY, Benjamin
hal.structure.identifierLaboratoire de Planétologie et Géodynamique [UMR 6112] [LPG]
dc.contributor.authorTOBIE, G.
dc.date.issued2017-03
dc.identifier.issn0012-821X
dc.description.abstractEnIt is widely believed that the carbonate-silicate cycle is the main agent to trigger deglaciations by CO$_2$ greenhouse warming on Earth and on Earth-like planets when they get in frozen state. Here we use a 3D Global Climate Model to simulate the ability of frozen planets to escape from glaciation by accumulating enough gaseous CO$_2$. We find that Earth-like planets orbiting a Sun-like star may never be able to escape from glaciation if their orbital distance is greater than $\sim$ 1.27 AU (Flux $<$ 847 W m$^{-2}$), because CO$_2$ would condense at the poles forming permanent CO$_2$ ice caps. This limits the amount of CO$_2$ in the atmosphere and thus its greenhouse effect. The amount of CO$_2$ that can be trapped in the polar caps depends on the efficiency of CO$_2$ ice to flow laterally as well as its graviational stability relative to subsurface water ice. The flow of CO$_2$ ice from poles to equator is mostly controlled by the bottom temperature, and hence by the internal heat flux. We find that a frozen Earth-like planet located at 1.30 AU of a Sun-like star could store as much as 1.5/4.5/15 bars of dry ice at the poles, for internal heat fluxes of 100/30/10 mW m$^{-2}$. But these amounts are lower limits. For planets with a significant water ice cover, we show that CO$_2$ ice deposits should be gravitationnally unstable. They get burried beneath the water ice cover in short timescales of 10$^2$-10$^3$ yrs, mainly controlled by the viscosity of water ice. For water ice cover exceeding about 300 m, we show that the CO$_2$ would be permanently sequestred underneath the water ice cover, in the form of CO$_2$ liquids, CO$_2$ clathrate hydrates and/or dissolved in subglacial water reservoirs (if any). This would considerably increase the amount of CO$_2$ trapped and further reduce the probability of deglaciation.
dc.language.isoen
dc.publisherElsevier
dc.subject.enAstrophysics - Earth and Planetary Astrophysics
dc.title.enCO$_2$ condensation is a serious limit to the deglaciation of Earth-like planets
dc.typeArticle de revue
dc.identifier.doi10.1016/j.epsl.2017.07.050
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.identifier.arxiv1703.04624
bordeaux.journalEarth and Planetary Science Letters
bordeaux.page11-21
bordeaux.volume476
bordeaux.peerReviewedoui
hal.identifierhal-01491039
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01491039v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Earth%20and%20Planetary%20Science%20Letters&amp;rft.date=2017-03&amp;rft.volume=476&amp;rft.spage=11-21&amp;rft.epage=11-21&amp;rft.eissn=0012-821X&amp;rft.issn=0012-821X&amp;rft.au=TURBET,%20Martin&amp;FORGET,%20Francois&amp;LECONTE,%20J.&amp;CHARNAY,%20Benjamin&amp;TOBIE,%20G.&amp;rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée