Evidence for disks at an early stage in class 0 protostars ?
PETY, Jérôme
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique [LERMA]
Institut de RadioAstronomie Millimétrique [IRAM]
See more >
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique [LERMA]
Institut de RadioAstronomie Millimétrique [IRAM]
PETY, Jérôme
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique [LERMA]
Institut de RadioAstronomie Millimétrique [IRAM]
< Reduce
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique [LERMA]
Institut de RadioAstronomie Millimétrique [IRAM]
Language
en
Article de revue
This item was published in
Astronomy and Astrophysics - A&A. 2017, vol. 606, p. id.A35
EDP Sciences
English Abstract
The formation epoch of protostellar disks is debated because of the competing roles of rotation, turbulence, and magnetic fields in the early stages of low-mass star formation. Magnetohydrodynamics simulations of ...Read more >
The formation epoch of protostellar disks is debated because of the competing roles of rotation, turbulence, and magnetic fields in the early stages of low-mass star formation. Magnetohydrodynamics simulations of collapsing cores predict that rotationally supported disks may form in strongly magnetized cores through ambipolar diffusion or misalignment between the rotation axis and the magnetic field orientation. Detailed studies of individual sources are needed to cross check the theoretical predictions. We present 0.06 - 0.1 arcsec resolution images at 350~GHz toward B1b-N and B1b-S, which are young class 0 protostars, possibly first hydrostatic cores. The images have been obtained with ALMA, and we compare these data with magnetohydrodynamics simulations of a collapsing turbulent and magnetized core. The submillimeter continuum emission is spatially resolved by ALMA. Compact structures with optically thick 350~GHz emission are detected toward both B1b-N and B1b-S, with 0.2 and 0.35 arcsec radii (46 and 80~au at the Perseus distance of 230~pc), within a more extended envelope. The flux ratio between the compact structure and the envelope is lower in B1b-N than in B1b-S, in agreementwith its earlier evolutionary status. The size and orientation of the compact structure are consistent with 0.2 arcsec resolution 32~GHz observations obtained with the Very Large Array as a part of the VANDAM survey, suggesting that grains have grown through coagulation. The morphology, temperature, and densities of the compact structures are consistent with those of disks formed in numerical simulationsof collapsing cores. Moreover, the properties of B1b-N are consistent with those of a very young protostar, possibly a first hydrostatic core. These observations provide support for the early formation of disks around low-mass protostars.Read less <
English Keywords
ISM: dense cores
ISM : low- mass star formation
ISM : Barnard 1b
ANR Project
Molecules interstellaires : spectroscopie et synthèse en laboratoire - ANR-13-BS05-0008
Origin
Hal imported