Show simple item record

hal.structure.identifierECLIPSE 2018
dc.contributor.authorLECONTE, J.
dc.date.issued2018-03
dc.identifier.issn1752-0894
dc.description.abstractEnA large fraction of known rocky exoplanets are expected to have been spun-down to a state of synchronous rotation, including temperate ones. Studies about the atmospheric and surface processes occurring on such planets thus assume that the day/night sides are fixed with respect to the surface over geological timescales. Here we show that this should not be the case for many synchronous exoplanets. This is due to True Polar Wander (TPW), a well known process occurring on Earth and in the Solar System that can reorient a planet without changing the orientation of its rotational angular momentum with respect to an inertial reference frame. As on Earth, convection in the mantle of rocky exoplanets should continuously distort their inertia tensor, causing reorientation. Moreover, we show that this reorientation is made very efficient by the slower rotation rate of synchronous planets. This is due to the weakness of their combined rotational/tidal bulge---the main stabilizing factor limiting TPW. Stabilization by an elastic lithosphere is also shown to be inefficient. We thus expect the axes of smallest and largest moment of inertia to change continuously over time but to remain closely aligned with the star-planet and orbital axes, respectively.
dc.language.isoen
dc.publisherNature Publishing Group
dc.title.enContinuous reorientation of synchronous terrestrial planets due to mantle convection
dc.typeArticle de revue
dc.identifier.doi10.1038/s41561-018-0071-2
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.subject.halPhysique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
dc.identifier.arxiv1809.01150
bordeaux.journalNature Geoscience
bordeaux.page168 - 172
bordeaux.volume11
bordeaux.issue3
bordeaux.peerReviewedoui
hal.identifierhal-01868924
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01868924v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nature%20Geoscience&rft.date=2018-03&rft.volume=11&rft.issue=3&rft.spage=168%20-%20172&rft.epage=168%20-%20172&rft.eissn=1752-0894&rft.issn=1752-0894&rft.au=LECONTE,%20J.&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record