Afficher la notice abrégée

hal.structure.identifierECLIPSE 2019
dc.contributor.authorPIERENS, A.
dc.contributor.authorLIN, Min-Kai
hal.structure.identifierECLIPSE 2019
dc.contributor.authorRAYMOND, Sean N.
dc.date.issued2019
dc.identifier.issn0035-8711
dc.description.abstractEnIn the innermost regions of protoplanerary discs, the solid-to-gas ratio can be increased considerably by a number of processes, including photoevaporative and particle drift. MHD disc models also suggest the existence of a dead-zone at $R\lesssim 10$ AU, where the regions close to the midplane remain laminar. In this context, we use two-fluid hydrodynamical simulations to study the interaction between a low-mass planet ($\sim 1.7 \;{\rm M_\oplus}$) on a fixed orbit and an inviscid pebble-rich disc with solid-to-gas ratio $\epsilon\ge 0.5$. For pebbles with Stokes numbers St=0.1, 0.5, multiple dusty vortices are formed through the Rossby Wave Instability at the planet separatrix. Effects due to gas drag then lead to a strong enhancement in the solid-to-gas ratio, which can increase by a factor of $\sim 10^3$ for marginally coupled particles with St=0.5. As in streaming instabilities, pebble clumps reorganize into filaments that may plausibly collapse to form planetesimals. When the planet is allowed to migrate in a MMSN disc, the vortex instability is delayed due to migration but sets in once inward migration stops due a strong positive pebble torque. Again, particle filaments evolving in a gap are formed in the disc while the planet undergoes an episode of outward migration. Our results suggest that vortex instabilities triggered by low-mass planets could play an important role in forming planetesimals in pebble-rich, inviscid discs, and may significantly modify the migration of low-mass planets. They also imply that planetary dust gaps may not necessarily contain planets if these migrated away.
dc.language.isoen
dc.publisherOxford University Press (OUP): Policy P - Oxford Open Option A
dc.subject.enAstrophysics - Earth and Planetary Astrophysics
dc.title.enVortex instabilities triggered by low-mass planets in pebble-rich, inviscid protoplanetary discs
dc.typeArticle de revue
dc.identifier.doi10.1093/mnras/stz1718
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
bordeaux.journalMonthly Notices of the Royal Astronomical Society
bordeaux.page645-659
bordeaux.volume488
bordeaux.issue1
bordeaux.peerReviewedoui
hal.identifierhal-02161840
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02161840v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Monthly%20Notices%20of%20the%20Royal%20Astronomical%20Society&rft.date=2019&rft.volume=488&rft.issue=1&rft.spage=645-659&rft.epage=645-659&rft.eissn=0035-8711&rft.issn=0035-8711&rft.au=PIERENS,%20A.&LIN,%20Min-Kai&RAYMOND,%20Sean%20N.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée