Intensification du procédé antisolvant supercritique (SAS) par l'usage de microréacteur sous pression
Langue
en
Thèses de doctorat
Date de soutenance
2019-11-29Spécialité
Génie des Procédés
École doctorale
École doctorale des sciences chimiques (Talence, Gironde)Résumé
Dans le cadre de cette thèse, nous nous proposons d’étudier le comportement thermo-hydrodynamique d’un mélange solvant/antisolvant supercritique dans une puce microfluidique, pour des conditions utilisées dans le procédé ...Lire la suite >
Dans le cadre de cette thèse, nous nous proposons d’étudier le comportement thermo-hydrodynamique d’un mélange solvant/antisolvant supercritique dans une puce microfluidique, pour des conditions utilisées dans le procédé SAS (Supercritical Antisolvent System). Ce travail se base sur une approche complémentaire expérience/simulation via l’utilisation de techniques de recherches avancées telles que la caractérisation in situ sur puce microfluidique (micro-PIV – micro Particle Image Velocimetry) et la simulation numérique intensive. L’objectif de la thèse est de définir les conditions favorables à un « très bon » mélange (total et rapide) des espèces en termes de vitesse, température, pression et « design » d’injecteur. Les simulations sont effectuées avec le code de calcul Notus, massivement parallèle. Après un premier chapitre détaillant l’état de l’art sur les procédés antisolvant supercritiques, puis un second concernant les méthodologies utilisées (modèle numérique, outils microfluidiques), nous comparons dans un premier temps les résultats des simulations numériques à ceux obtenus avec les expériences de micro-PIV en écoulement laminaire. La comparaison est très bonne pour l’ensemble des expériences réalisées. Le code de calcul ainsi validé, nous proposons d’utiliser l’outil numérique comme véritable outil de recherche des meilleures conditions opératoires pour favoriser le mélange. Pour cela, des simulations du mélange de deux fluides (typiquement CO2 et éthanol) sont effectuées pour différentes conditions opératoires (vitesse, température, pression) pour des conditions laminaires mais également en conditions turbulentes, régime rarement atteint à ces échelles de réacteur. En effet, nous avons montré expérimentalement que le régime turbulent pouvait être atteint dans le microcanal grâce à la technologie « microfluidique haute pression » développé au laboratoire. L’étude de la qualité du mélange se base sur deux critères communément utilisées dans la littérature. Le premier est l’index de ségrégation basé sur la variance du champ de concentration ou fraction massique dans notre cas. Celui-ci peut être estimé pour tous les cas de simulation, du laminaire au turbulent. Le deuxième critère est le temps de micromélange basé sur l’estimation du taux de dissipation de l’énergie cinétique turbulente. Celui-ci est calculé uniquement dans les cas turbulents car basé sur les fluctuations des vitesses par rapport à la valeur moyenne. Un des intérêts majeurs de l’utilisation des puces microfluidiques réside notamment dans ses faibles échelles de temps et d’espace. D’un point de vue numérique, de telles échelles permettent, dans des temps de calcul raisonnables, de proposer des simulations numériques directes (DNS), i.e., dont les plus petites mailles sont inférieures ou très proches de l’échelle de Kolmogorov. Ceci est de tout premier intérêt car nous sommes capables de capter les plus petites échelles du mélange et notamment le micromélange. Ainsi, les résultats de simulation nous ont permis de proposer une analyse fiable du mélange d’un point de vue qualitatif et quantitatif, faisant la preuve que les conditions de mélange dans ce type de dispositif sont particulièrement favorables pour l’élaboration de matériaux par antisolvant supercritique. Les conditions optimales de mélange ainsi déterminées, nous proposons dans une dernière partie de simuler la synthèse de nanoparticules organiques dans de tels dispositifs. L’approche numérique est basée sur un couplage des équations de la mécanique des fluides et d’une équation de bilan de population permettant de prendre en compte la nucléation et croissance des particules. Les résultats de simulation ont été comparés avec succès avec ceux expérimentaux obtenues au laboratoire.< Réduire
Résumé en anglais
In the context of this thesis, we propose to study the thermo-hydrodynamic behavior of a mixture, a solvent and a supercritical antisolvent (CO2) in a microfluidic chip, for conditions used in the Supercritical Antisolvent ...Lire la suite >
In the context of this thesis, we propose to study the thermo-hydrodynamic behavior of a mixture, a solvent and a supercritical antisolvent (CO2) in a microfluidic chip, for conditions used in the Supercritical Antisolvent (SAS) process. This work is based on a complementary approach of both experiments and simulations through the use of advanced research techniques, such as the in situ characterization inside the microfluidic reactor (Micro-Particle Image Velocimetry) and the High Performance Computing. The objective of the thesis is to determine the favorable conditions for a "very good" mixture (total and fast) of species in terms of velocity, temperature, pressure and injector "design". The simulations are performed with the massively parallel code Notus. After the first chapter detailing the state of the art on the supercritical antisolvent processes, then the second concerning the applied methodologies (numerical model, microfluidic tools), we first compare the results of the numerical simulations to the experimental data obtained by micro-PIV in laminar flow conditions. The simulation results are in good agreement with the experiments. After the validation of the numerical code, we propose to use the numerical tool to determine the optimal operating conditions of mixing. For this, simulations of the mixture of two fluids (typically CO2 and ethanol) are performed for different operating conditions (velocity, temperature, pressure) for laminar conditions but also for turbulent conditions, a regime rarely reached in microreactors. Indeed, we have shown experimentally that the turbulent mixing could be reached in the microchannel thanks to the "high pressure microfluidic" technology developed in the laboratory. The study of the mixing quality is based on two criteria commonly used in the literature. The first is the segregation intensity based on the variance of the ethanol concentration. This can be estimated for all simulation cases, from laminar to turbulent mixing. The second criterion is the micromixing time related to the turbulent kinetic energy dissipation rate directly estimated from the local velocity fluctuations in turbulent flow conditions. One of the major interests of the use of microfluidic reactors lies especially in its small scales of time and space. From a numerical point of view, such scales allow, within reasonable CPU time, to perform direct numerical simulations (DNS), i.e., in which the grid size is smaller or very close to the Kolmogorov scale. This is of primary interest because we are able to capture the smallest scales of the mixture including the micromixing. Thus, the simulation results allow us to propose a reliable analysis of the mixture from both qualitative and quantitative point of view, proving that the mixing conditions in this type of device are particularly favorable for the material synthesis by supercritical antisolvent. After determining the optimal mixing conditions, we propose in a final part to simulate the synthesis of organic nanoparticles in such devices. The numerical approach is based on the coupling between the CFD code and a population balance equation to take into account the nucleation and growth of particles. The simulation results are also in a good agreement with the experimental measurements performed in the laboratory.< Réduire
Mots clés
Mélange microfluidique
Procédé antisolvent
Fluide supercritique
Mots clés en anglais
Microfluidic mixing
Antisolvent process
Supercritical fluid
Origine
Importé de STARUnités de recherche