A probabilistic model for the high cycle fatigue behaviour of cast aluminium alloys subject to complex loads
BELLETT, Daniel
Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
MOREL, Franck
Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
Voir plus >
Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
BELLETT, Daniel
Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
MOREL, Franck
Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
PESSARD, Etienne
Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
< Réduire
Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
Langue
en
Article de revue
Ce document a été publié dans
International Journal of Fatigue. 2013-02, vol. 47, p. 137-147
Elsevier
Résumé en anglais
This article is dedicated to the high cycle fatigue behaviour of cast hypo-eutectic Al-Si alloys and in particular the AlSi7Cu05Mg03 alloy. In a vast experimental campaign undertaken to investigate the fatigue damage ...Lire la suite >
This article is dedicated to the high cycle fatigue behaviour of cast hypo-eutectic Al-Si alloys and in particular the AlSi7Cu05Mg03 alloy. In a vast experimental campaign undertaken to investigate the fatigue damage mechanisms operating in this alloy, subject to complex loading conditions, it was shown that two different coexisting fatigue damage mechanisms occur in this materials, depending on the presence of different microstructural heterogeneities (i.e. micro-shrinkage pores, Si particles, Fe-rich intermetallic phases, DAS of the Al-matrix, etc.). In order to take into account both of these damage mechanisms, a probabilistic approach using the weakest link concept is introduced to model the competition between the two mechanisms. This approach leads naturally to a probabilistic Kitagawa type diagram, which explains the relationship between the fatigue behaviour of the material and the different casting processes or post-treatments (e.g. gravity casting and HIP). It is shown that the sensitivity to the different loading modes (i.e. uniaxial with and without mean stress, torsion and equibiaxial tension) depends on the microstructural heterogeneities responsible for crack initiation. For a porosity-free alloy, the predictions are very good for combined tension-torsion loading modes. When pores are present and control the fatigue strength, the predictions are very satisfactory for the uniaxial loads with different R-ratios and slightly conservative for multiaxial loads (i.e. torsion and equibiaxial tension). Never-the-less, they are much better than the predictions of the Dang Van criterion [1].< Réduire
Mots clés en anglais
High cycle fatigue
AlSi7Cu05Mg03-T7
Multiaxial loads
Probabilistic model
Fatigue damage mechanisms
Origine
Importé de halUnités de recherche