Experimental Validation of a Marine Current Turbine Simulator: Application to a Permanent Magnet Synchronous Generator-Based System Second-Order Sliding Mode Control
BENELGHALI, Seifeddine
Institut de Recherche de l'Ecole Navale [IRENAV]
Laboratoire brestois de mécanique et des systèmes [LBMS]
Voir plus >
Institut de Recherche de l'Ecole Navale [IRENAV]
Laboratoire brestois de mécanique et des systèmes [LBMS]
BENELGHALI, Seifeddine
Institut de Recherche de l'Ecole Navale [IRENAV]
Laboratoire brestois de mécanique et des systèmes [LBMS]
< Réduire
Institut de Recherche de l'Ecole Navale [IRENAV]
Laboratoire brestois de mécanique et des systèmes [LBMS]
Langue
en
Article de revue
Ce document a été publié dans
IEEE Transactions on Industrial Electronics. 2011, vol. 58, n° 1, p. 118-126
Institute of Electrical and Electronics Engineers
Résumé en anglais
This paper deals with the experimental validation of a Matlab-Simulink simulation tool of marine current turbine (MCT) systems. The developed simulator is intended to be used as a sizing and site evaluation tool for MCT ...Lire la suite >
This paper deals with the experimental validation of a Matlab-Simulink simulation tool of marine current turbine (MCT) systems. The developed simulator is intended to be used as a sizing and site evaluation tool for MCT installations. For that purpose, the simulator is evaluated within the context of speed control of a permanent magnet synchronous generatorbased (PMSG) MCT. To increase the generated power, and therefore the efficiency of an MCT, a nonlinear controller has been proposed. PMSG has been already considered for similar applications, particularly wind turbine systems using mainly PI controllers. However, such kinds of controllers do not adequately handle some of tidal resource characteristics such as turbulence and swell effects. Moreover, PMSG parameter variations should be accounted for. Therefore, a robust nonlinear control strategy, namely second-order sliding mode control, is proposed. The proposed control strategy is inserted in the simulator that accounts for the resource and the marine turbine models. Simulations using tidal current data from Raz de Sein (Brittany, France) and experiments on a 7.5-kW real-time simulator are carried out for the validation of the simulator.< Réduire
Mots clés en anglais
Marine current turbine (MCT)
modeling
nonlinear control
permanent magnet synchronous generator (PMSG)
second-order sliding mode (SOSM)
simulation
Origine
Importé de halUnités de recherche